-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathorbits.js
896 lines (787 loc) · 27.5 KB
/
orbits.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/**
* orbits-js
* @author Rossen Georgiev @ {@link https://github.com/rossengeorgiev}
* @description A tiny library that can parse TLE, and display the orbit on the map
* @requires: GMaps API 3
*
* @version 1.2.1
* @namespace
*/
var orbits = {
version: '1.2.1',
/**
* @namespace
*/
util: {}
};
/**
* merge two objects together, b takes precedence
* @param {Object} a - First object instance
* @param {Object} b - Second object instance
* @returns {Object}
*/
orbits.util.mergeOpts = function(a, b) {
var k, result = {};
for(k in a) result[k] = a[k];
for(k in b) result[k] = b[k];
return result;
};
/**
* takes a Date instance and return julian day
* @param {Date} date - Date instance
* @returns {float}
*/
orbits.util.jday = function(date) {
return (date.getTime() / 86400000.0) + 2440587.5;
};
/**
* takes a Date instance and returns Greenwich mean sidereal time in radii
* @param {Date} date - Date instance
* @returns {float}
*/
orbits.util.gmst = function(date) {
var jd = orbits.util.jday(date);
//t is the time difference in Julian centuries of Universal Time (UT1) from J2000.0.
var t = (jd - 2451545.0) / 36525;
// based on http://www.space-plasma.qmul.ac.uk/heliocoords/systems2art/node10.html
var gmst = 67310.54841 + (876600.0*3600 + 8640184.812866) * t + 0.093104 * t*t - 0.0000062 * t*t*t;
gmst = (gmst * (Math.PI/180) / 240.0) % (Math.PI*2);
gmst += (gmst<0) ? Math.PI*2 : 0;
return gmst;
};
/**
* Get distance to true horizon in meters
* @param {float} altitude - In meters
* @returns {float}
*/
orbits.util.getDistanceToHorizon = function(altitude) {
return Math.sqrt(12.756 * altitude) * 1000;
};
orbits.util.halfEarthCircumference = parseInt(6371 * Math.PI * 500);
/**
* Calculate position of the sun for a given date
* @param {Date} date - An instance of Date
* @returns {float[]} [latitude, longitude]
*/
orbits.util.calculatePositionOfSun = function(date) {
date = (date instanceof Date) ? date : new Date();
var rad = 0.017453292519943295;
// based on NOAA solar calculations
var mins_past_midnight = (date.getUTCHours() * 60 + date.getUTCMinutes()) / 1440;
var jc = (this.jday(date) - 2451545)/36525;
var mean_long_sun = (280.46646+jc*(36000.76983+jc*0.0003032)) % 360;
var mean_anom_sun = 357.52911+jc*(35999.05029-0.0001537*jc);
var sun_eq = Math.sin(rad*mean_anom_sun)*(1.914602-jc*(0.004817+0.000014*jc))+Math.sin(rad*2*mean_anom_sun)*(0.019993-0.000101*jc)+Math.sin(rad*3*mean_anom_sun)*0.000289;
var sun_true_long = mean_long_sun + sun_eq;
var sun_app_long = sun_true_long - 0.00569 - 0.00478*Math.sin(rad*125.04-1934.136*jc);
var mean_obliq_ecliptic = 23+(26+((21.448-jc*(46.815+jc*(0.00059-jc*0.001813))))/60)/60;
var obliq_corr = mean_obliq_ecliptic + 0.00256*Math.cos(rad*125.04-1934.136*jc);
var lat = Math.asin(Math.sin(rad*obliq_corr)*Math.sin(rad*sun_app_long)) / rad;
var eccent = 0.016708634-jc*(0.000042037+0.0000001267*jc);
var y = Math.tan(rad*(obliq_corr/2))*Math.tan(rad*(obliq_corr/2));
var rq_of_time = 4*((y*Math.sin(2*rad*mean_long_sun)-2*eccent*Math.sin(rad*mean_anom_sun)+4*eccent*y*Math.sin(rad*mean_anom_sun)*Math.cos(2*rad*mean_long_sun)-0.5*y*y*Math.sin(4*rad*mean_long_sun)-1.25*eccent*eccent*Math.sin(2*rad*mean_anom_sun))/rad);
var true_solar_time = (mins_past_midnight*1440+rq_of_time) % 1440;
var lng = -((true_solar_time/4 < 0) ? true_solar_time/4 + 180 : true_solar_time/4 - 180);
return [lat, lng];
};
/**
* Calculate LatLng of the sun for a given date
* @param {Date} date - An instance of Date
* @returns {google.maps.LatLng}
*/
orbits.util.calculateLatLngOfSun = function(date) {
var pos = orbits.util.calculatePositionOfSun(date);
return new google.maps.LatLng(pos[0], pos[1]);
};
/**
* Parses a string with one or more TLEs
* @param {string} text - A string containing one or more TLEs
* @returns {array.<orbits.TLE>} An array of orbit.TLE instances
*/
orbits.util.parseTLE = function(text) {
"use strict";
if(!text || typeof text != "string" || text === "") return [];
var lines = text.split("\n");
// trim emepty lines
for(var i = 0; i < lines.length; i++) if(lines[i] === "") lines.splice(i,1);
// see if we got somethin reasonable
if(lines.length < 3) return [];
if(lines.length % 3 !== 0)
throw new SyntaxError("The number of lines should be multiple of 3");
// try and make the array
var three;
var array = [];
while(lines.length) array.push(new orbits.TLE(lines.splice(0,3).join("\n")));
return array;
};
/**
*Object with the default options for Satellite object
* @prop {orbits.TLE} tle - An instance of orbits.TLE
* @prop {string} title - Alternative title to use for the marker, instead of the one from TLE
* @prop {float} pathLength - The length is in periods. Length = period * pathLength
* @prop {boolean} visible - Whenever to display the map or not
* @prop {google.maps.Map} map - An instance of google.maps.Map
* @prop {google.maps.MarkerOptions} markerOpts - An instance of google.maps.MarkerOptions
* @prop {google.maps.CircleOptions} horzionOpts - An instance of google.maps.CircleOptions
* @prop {google.maps.PolylineOptions} polylineOpts - An instance of google.maps.PolylineOptions
* @prop {boolean} drawShadowPolylines - Whenever to draw indicators when Satellite is shadowed by Earth
* @prop {google.maps.PolylineOptions} shadowPolylinesOpts - An instance of google.maps.PolylineOptions
*/
orbits.SatelliteOptions = {
tle: "",
title: null,
pathLength: 1,
visible: true,
map: null,
markerOpts: {
zIndex: 50,
},
horizonOpts: {
radius: 0,
zIndex: 10,
strokeWeight: 2,
strokeColor: "white",
strokeOpacity: 0.8,
fillColor: "white",
fillOpacity: 0.2,
},
polylineOpts: {
zIndex: 20,
geodesic: true,
strokeWeight: 2,
strokeColor: "blue",
strokeOpacity: 0.8
},
drawShadowPolylines: true,
shadowPolylinesOpts: {
zIndex: 20,
geodesic: true,
strokeWeight: 5,
strokeColor: "blue",
strokeOpacity: 0.8
},
};
/**
*Initializes a Satellite object (requires Google Maps API3)
* @class
* @param {orbits.SatelliteOptions} options - an obj with options, see orbits.SatelliteOptions
*/
orbits.Satellite = function(options) {
"use strict";
this.tle = null;
this.position = null;
this.path = null;
this.visible = true;
this.orbit = null;
this.date = null;
// handle options
options = (typeof options == 'object') ? options : {};
var opt;
for(opt in orbits.SatelliteOptions) {
if(opt in options) {
if(typeof orbits.SatelliteOptions[opt] === "object" && orbits.SatelliteOptions[opt] !== null) {
this[opt] = orbits.util.mergeOpts(orbits.SatelliteOptions[opt], options[opt]);
}
else {
this[opt] = options[opt];
}
}
else {
this[opt] = orbits.SatelliteOptions[opt];
}
}
// init map elements, if note are set
this.marker = new google.maps.Marker(this.markerOpts);
this.horizon = new google.maps.Circle(this.horizonOpts);
this.horizon.bindTo('center', this.marker, 'position');
this.polyline = new google.maps.Polyline(this.polylineOpts);
this.shadowPolylines = [];
// attach markers to map
if(this.visible) this.setMap(this.map);
// check if we have TLE and init orbit
if(this.tle !== null && !(this.tle instanceof orbits.TLE)) this.tle = null;
if(this.tle !== null) this.setTLE(this.tle);
// refresh
this.refresh();
};
/**
* Set a Date instance or null to use the current datetime.
* Call refresh() to update the position afterward.
* @param {Date} date - An instance of Date
*/
orbits.Satellite.prototype.setDate = function(date) {
this.date = date;
};
/**
* Set the map instance to use
* @param {google.maps.Map} map - An instance of google.maps.Map
*/
orbits.Satellite.prototype.setMap = function(map) {
this.map = map;
this.marker.setMap(this.map);
this.horizon.setMap(this.map);
this.polyline.setMap(this.map);
this.shadowPolylines.forEach(function(v) { v.setMap(this.map); });
};
/**
*Recalculates the position and updates the markers
*/
orbits.Satellite.prototype.refresh = function() {
if(!this.visible || this.orbit === null || this.map === null) return;
this.orbit.setDate(this.date);
this.orbit.propagate();
this.position = this.orbit.getLatLng();
this.marker.setPosition(this.position);
var alt = this.orbit.getAltitude() * 1000;
this.horizon.setRadius(orbits.util.getDistanceToHorizon(alt));
};
/**
*Redraw path
*/
orbits.Satellite.prototype.refresh_path = function() {
if(this.pathLength >= 1.0/180) this._updatePoly();
};
/**
* Set TLE for this satellite
* @param {orbits.TLE} tle - An instance of orbits.TLE
*/
orbits.Satellite.prototype.setTLE = function(tle) {
this.orbit = new orbits.Orbit(tle);
this.marker.setTitle(tle.name);
};
orbits.Satellite.prototype._updatePoly = function() {
var dt = (this.orbit.getPeriod() * 1000) / 180;
var date = (this.date) ? this.date : new Date();
this.path = [];
this.shadowPolylines.forEach(function(v) { v.setMap(null); });
this.shadowPolylines = [];
var night = false;
var curr_path = [];
var curr_poly = null;
var curr_date = null;
var curr_night = null;
var i = 0;
var jj = (180 * this.pathLength) + 1;
for(; i <= jj; i++) {
curr_date = new Date(date.getTime() + dt*i);
this.orbit.setDate(curr_date);
this.orbit.propagate();
var pos = this.orbit.getLatLng();
this.path.push(pos);
if(!this.drawShadowPolylines) continue;
var dist = google.maps.geometry.spherical.computeDistanceBetween(orbits.util.calculateLatLngOfSun(curr_date), pos);
curr_night = dist > orbits.util.halfEarthCircumference + orbits.util.getDistanceToHorizon(this.orbit.getAltitude() * 1000);
if(night === true && curr_night === true) {
curr_path.push(pos);
}
else if(night === true && curr_night === false) {
curr_poly.setPath(curr_path);
}
else if(night === false && curr_night === true) {
curr_poly = new google.maps.Polyline(this.shadowPolylinesOpts);
curr_poly.setMap(this.map);
this.shadowPolylines.push(curr_poly);
curr_path = [pos];
}
night = curr_night;
}
if(night) curr_poly.setPath(curr_path);
this.polyline.setPath(this.path);
};
/**
* Initializes a TLE object containing parsed TLE
* @class
* @param {string} text - A TLE string of 3 lines
*/
orbits.TLE = function(text) {
this.text = text;
this.parse(this.text);
};
/**
* Parses TLE string and sets the proporties
* @param {string} text - A TLE string of 3 lines
*/
orbits.TLE.prototype.parse = function(text) {
"use strict";
var lines = text.split("\n");
if(lines.length != 3) throw new SyntaxError("Invalid TLE syntax");
// parse first line
this.name = lines[0].substring(0,24).trim();
// parse second line
if(lines[1][0] != "1") throw new SyntaxError("Invalid TLE syntax");
// TODO: verify line using the checksum in field 14
/**
* Satellite Number
* @type {int}
* @readonly
*/
this.satelite_number = parseInt(lines[1].substring(2,7));
/**
* Classification (U=Unclassified)
* @type {string}
* @readonly
*/
this.classification = lines[1].substring(7,8);
/**
* International Designator (Last two digits of launch year, eg. '98')
* @type {string}
* @readonly
*/
this.intd_year = lines[1].substring(9,11);
/**
* International Designator (Launch number of the year, eg. '067')
* @type {string}
* @readonly
*/
this.intd_ln = lines[1].substring(11,14);
/**
* International Designator (Piece of the launch, eg. 'A')
* @type {string}
* @readonly
*/
this.intd_place = lines[1].substring(14,17).trim();
/**
* International Designator (eg. 98067A)
* @type {string}
* @readonly
*/
this.intd = lines[1].substring(9,17).trim();
/**
* Epoch Year (Full year)
* @type {int}
* @readonly
*/
this.epoch_year = parseInt(lines[1].substring(18,20));
this.epoch_year += (this.epoch_year < 57) ? 2000 : 1000;
/**
* Epoch (Day of the year and fractional portion of the day)
* @type {float}
* @readonly
*/
this.epoch_day = parseFloat(lines[1].substring(20,32));
/**
* First Time Derivative of the Mean Motion divided by two
* @type {float}
* @readonly
*/
this.ftd = parseFloat(lines[1].substring(33,43));
/**
* Second Time Derivative of Mean Motion divided by six
* @type {float}
* @readonly
*/
this.std = 0;
var tmp = lines[1].substring(44,52).split(/[+-]/);
if(tmp.length == 3) this.std = -1 * parseFloat("."+tmp[1].trim()) * Math.pow(10,-parseInt(tmp[2]));
else this.std = parseFloat("."+tmp[0].trim()) * Math.pow(10,-parseInt(tmp[1]));
/**
* BSTAR drag term
* @type {float}
* @readonly
*/
this.bstar = 0;
tmp = lines[1].substring(53,61).split(/[+-]/);
if(tmp.length == 3) this.bstar = -1 * parseFloat("."+tmp[1].trim()) * Math.pow(10,-parseInt(tmp[2]));
else this.bstar = parseFloat("."+tmp[0].trim()) * Math.pow(10,-parseInt(tmp[1]));
/**
* The number 0 (Originally this should have been "Ephemeris type")
* @type {int}
* @readonly
*/
this.ehemeris_type = parseInt(lines[1].substring(62,63));
/**
* Element set number. incremented when a new TLE is generated for this object.
* @type {int}
* @readonly
*/
this.element_number = parseInt(lines[1].substring(64,68));
// parse third line
if(lines[2][0] != "2") throw new SyntaxError("Invalid TLE syntax");
// TODO: verify line using the checksum in field 14
/**
* Inclination [Degrees]
* @type {float}
* @readonly
*/
this.inclination = parseFloat(lines[2].substring(8,16));
/**
* Right Ascension of the Ascending Node [Degrees]
* @type {float}
* @readonly
*/
this.right_ascension = parseFloat(lines[2].substring(17,25));
/**
* Eccentricity
* @type {float}
* @readonly
*/
this.eccentricity = parseFloat("."+lines[2].substring(26,33).trim());
/**
* Argument of Perigee [Degrees]
* @type {float}
* @readonly
*/
this.argument_of_perigee = parseFloat(lines[2].substring(34,42));
/**
* Mean Anomaly [Degrees]
* @type {float}
* @readonly
*/
this.mean_anomaly = parseFloat(lines[2].substring(43,51));
/**
* Mean Motion [Revs per day]
* @type {float}
* @readonly
*/
this.mean_motion = parseFloat(lines[2].substring(52,63));
/**
* Revolution number at epoch [Revs]
* @type {int}
* @readonly
*/
this.epoch_rev_number = parseInt(lines[2].substring(63,68));
};
/**
* Takes a date instance and returns the different between it and TLE's epoch
* @param {Date} date - A instance of Date
* @returns {int} delta time in millis
*/
orbits.TLE.prototype.dtime = function(date) {
var a = orbits.util.jday(date);
var b = orbits.util.jday(new Date(Date.UTC(this.epoch_year, 0, 0, 0, 0, 0) + this.epoch_day * 86400000));
return (a - b) * 1440.0; // in minutes
};
/**
* Returns the TLE string
* @returns {string} TLE string in 3 lines
*/
orbits.TLE.prototype.toString = function() {
return this.text;
};
/**
* Takes orbit.TLE object and initialized the SGP4 model
* @class
* @param {orbit.TLE} tleObj - An instance of orbits.TLE
*/
orbits.Orbit = function(tleObj) {
"use strict";
this.tle = tleObj;
this.date = null;
// init constants
this.ck2 =5.413080e-4;
this.ck4 = 0.62098875e-6;
this.e6a = 1.0e-6;
this.qoms2t = 1.88027916e-9;
this.s = 1.01222928;
this.xj3 = -0.253881e-5;
this.xke = 0.743669161e-1;
this.xkmper = 6378.137; // Earth's radius WGS-84
this.xflat = 0.00335281066; // WGS-84 flattening
this.xminpday = 1440.0;
this.ae = 1.0;
this.pi = Math.PI;
this.pio2 = this.pi / 2;
this.twopi = 2 * this.pi;
this.x3pio2 = 3 * this.pio2;
this.torad = this.pi/180;
this.tothrd = 0.66666667;
this.xinc = this.tle.inclination * this.torad;
this.xnodeo = this.tle.right_ascension * this.torad;
this.eo = this.tle.eccentricity;
this.omegao = this.tle.argument_of_perigee * this.torad;
this.xmo = this.tle.mean_anomaly * this.torad;
this.xno = this.tle.mean_motion * this.twopi / 1440.0;
this.bstar = this.tle.bstar;
// recover orignal mean motion (xnodp) and semimajor axis (adop)
var a1 = Math.pow(this.xke / this.xno, this.tothrd);
var cosio = Math.cos(this.xinc);
var theta2 = cosio*cosio;
var x3thm1 = 3.0 * theta2 - 1;
var eosq = this.eo * this.eo;
var betao2= 1.0 - eosq;
var betao = Math.sqrt(betao2);
var del1 = 1.5 * this.ck2 * x3thm1 / (a1*a1 * betao*betao2);
var ao = a1 * (1 - del1 * ((1.0/3.0) + del1 * (1.0 + (134.0/81.0) * del1)));
var delo = 1.5 * this.ck2 * x3thm1/(ao * ao * betao * betao2);
var xnodp = this.xno/(1.0 + delo); //original_mean_motion
var aodp = ao/(1.0 - delo); //semi_major_axis
// initialization
this.isimp = ((aodp*(1.0-this.eo)/this.ae) < (220.0/this.xkmper+this.ae)) ? 1 : 0;
var s4 = this.s;
var qoms24 = this.qoms2t;
var perige = (aodp * (1.0-this.eo) - this.ae) * this.xkmper;
if (perige < 156.0){
s4 = perige - 78.0;
if (perige <= 98.0){
s4 = 20.0;
} else {
qoms24 = Math.pow(((120.0 - s4)*this.ae/this.xkmper), 4);
s4 = s4/this.xkmper+this.ae;
}
}
var pinvsq = 1.0/(aodp * aodp * betao2 * betao2);
var tsi = 1.0/(aodp - s4);
var eta = aodp * this.eo * tsi;
var etasq = eta * eta;
var eeta = this.eo * eta;
var psisq = Math.abs(1.0 - etasq);
var coef = qoms24 * Math.pow(tsi,4);
var coef1 = coef/Math.pow(psisq,3.5);
var c2 = coef1 * xnodp * (aodp * (1.0 + 1.5 * etasq + eeta * (4.0 + etasq)) + 0.75 * this.ck2 * tsi/psisq * x3thm1 * (8.0 + 3.0 * etasq * (8.0 + etasq)));
var c1 = this.bstar * c2;
var sinio = Math.sin(this.xinc);
var a3ovk2 = -this.xj3/this.ck2 * Math.pow(this.ae,3);
var c3 = coef * tsi * a3ovk2 * xnodp * this.ae * sinio/this.eo;
var x1mth2 = 1.0 - theta2;
var c4 = 2.0 * xnodp * coef1 * aodp * betao2 * (eta * (2.0 + 0.5 * etasq) + this.eo * (0.5 + 2.0 * etasq) - 2.0 * this.ck2 * tsi/(aodp * psisq) * (-3.0 * x3thm1 * (1.0 - 2.0 * eeta + etasq * (1.5 - 0.5 * eeta)) + 0.75 * x1mth2 * (2.0 * etasq - eeta * (1.0 + etasq)) * Math.cos((2.0 * this.omegao))));
this.c5 = 2.0 * coef1 * aodp * betao2 * (1.0 + 2.75 * (etasq + eeta) + eeta * etasq);
var theta4 = theta2 * theta2;
var temp1 = 3.0 * this.ck2 * pinvsq * xnodp;
var temp2 = temp1 * this.ck2 * pinvsq;
var temp3 = 1.25 * this.ck4 * pinvsq * pinvsq * xnodp;
this.xmdot = xnodp + 0.5 * temp1 * betao * x3thm1 + 0.0625 * temp2 * betao * (13.0 - 78.0 * theta2 + 137.0 * theta4);
var x1m5th = 1.0 - 5.0 * theta2;
this.omgdot = -0.5 * temp1 * x1m5th + 0.0625 * temp2 * (7.0 - 114.0 * theta2 + 395.0 * theta4) + temp3 * (3.0 - 36.0 * theta2 + 49.0 * theta4);
var xhdot1 = -temp1 * cosio;
this.xnodot = xhdot1 + (0.5 * temp2 * (4.0 - 19.0 * theta2) + 2.0 * temp3 * (3.0 - 7.0 * theta2)) * cosio;
this.omgcof = this.bstar * c3 * Math.cos(this.omegao);
this.xmcof = -this.tothrd * coef * this.bstar * this.ae/eeta;
this.xnodcf = 3.5 * betao2 * xhdot1 * c1;
this.t2cof = 1.5 * c1;
this.xlcof = 0.125 * a3ovk2 * sinio * (3.0 + 5.0 * cosio)/(1.0 + cosio);
this.aycof = 0.25 * a3ovk2 * sinio;
this.delmo = Math.pow((1.0 + eta * Math.cos(this.xmo)),3);
this.sinmo = Math.sin(this.xmo);
this.x7thm1 = 7.0 * theta2 - 1.0;
var d2, d3, d4;
if (this.isimp != 1){
var c1sq = c1 * c1;
d2 = 4.0 * aodp * tsi * c1sq;
var temp = d2 * tsi * c1/3.0;
d3 = (17.0 * aodp + s4) * temp;
d4 = 0.5 * temp * aodp * tsi * (221.0 * aodp + 31.0 * s4) * c1;
this.t3cof = d2 + 2.0 * c1sq;
this.t4cof = 0.25 * (3.0 * d3 + c1 * (12.0 * d2 + 10.0 * c1sq));
this.t5cof = 0.2 * (3.0 * d4 + 12.0 * c1 * d3 + 6.0 * d2 * d2 + 15.0 * c1sq * (2.0 * d2 + c1sq));
}
// set variables that are needed in the calculate() routine
this.aodp = aodp;
this.c1 = c1;
this.c4 = c4;
this.cosio = cosio;
this.d2 = d2;
this.d3 = d3;
this.d4 = d4;
this.eta = eta;
this.sinio = sinio;
this.x3thm1 = x3thm1;
this.x1mth2 = x1mth2;
this.xnodp = xnodp;
};
/**
*calculates position and velocity vectors based date set on the Orbit object
*/
orbits.Orbit.prototype.propagate = function() {
"use strict";
var date = (this.date === null) ? new Date() : this.date;
var tsince = this.tle.dtime(date);
// update for secular gravity and atmospheric drag
var xmdf = this.xmo + this.xmdot * tsince;
var omgadf = this.omegao + this.omgdot * tsince;
var xnoddf = this.xnodeo + this.xnodot * tsince;
var omega = omgadf;
var xmp = xmdf;
var tsq = tsince * tsince;
var xnode = xnoddf + this.xnodcf * tsq;
var tempa= 1.0 - this.c1 * tsince;
var tempe = this.bstar * this.c4 * tsince;
var templ = this.t2cof * tsq;
var temp;
if (this.isimp != 1){
var delomg = this.omgcof * tsince;
var delm = this.xmcof * (Math.pow((1.0 + this.eta * Math.cos(xmdf)),3) - this.delmo);
temp = delomg + delm;
xmp = xmdf + temp;
omega = omgadf - temp;
var tcube = tsq * tsince;
var tfour = tsince * tcube;
tempa = tempa - this.d2 * tsq - this.d3 * tcube - this.d4 * tfour;
tempe = tempe + this.bstar * this.c5 * (Math.sin(xmp) - this.sinmo);
templ = templ + this.t3cof * tcube + tfour * (this.t4cof + tsince * this.t5cof);
}
var a = this.aodp * tempa * tempa;
var e = this.eo - tempe;
var xl = xmp + omega + xnode + this.xnodp * templ;
var beta = Math.sqrt(1.0 - e*e);
var xn = this.xke/Math.pow(a,1.5);
// long period periodics
var axn = e * Math.cos(omega);
temp = 1.0/(a * beta * beta);
var xll = temp * this.xlcof * axn;
var aynl = temp * this.aycof;
var xlt = xl + xll;
var ayn = e * Math.sin(omega) + aynl;
// solve keplers equation
var capu = (xlt-xnode)%(2.0*Math.PI);
var temp2 = capu;
var i;
var temp3, temp4, temp5, temp6;
var sinepw, cosepw;
for (i=1; i<=10; i++){
sinepw = Math.sin(temp2);
cosepw = Math.cos(temp2);
temp3 = axn * sinepw;
temp4 = ayn * cosepw;
temp5 = axn * cosepw;
temp6 = ayn * sinepw;
var epw = (capu - temp4 + temp3 - temp2)/(1.0 - temp5 - temp6) + temp2;
if (Math.abs(epw - temp2) <= this.e6a){
break;
}
temp2 = epw;
}
// short period preliminary quantities
var ecose = temp5 + temp6;
var esine = temp3 - temp4;
var elsq = axn * axn + ayn * ayn;
temp = 1.0 - elsq;
var pl = a*temp;
var r = a*(1.0 - ecose);
var temp1 = 1.0/r;
var rdot = this.xke * Math.sqrt(a) * esine * temp1;
var rfdot = this.xke * Math.sqrt(pl) * temp1;
temp2 = a*temp1;
var betal = Math.sqrt(temp);
temp3 = 1.0/(1.0 + betal);
var cosu = temp2 * (cosepw - axn + ayn * esine * temp3);
var sinu = temp2 * (sinepw - ayn - axn * esine * temp3);
var u = Math.atan2(sinu,cosu);
u += (u<0) ? 2* Math.PI : 0;
var sin2u = 2.0 * sinu * cosu;
var cos2u = 2.0 * cosu * cosu - 1.0;
temp = 1.0/pl;
temp1 = this.ck2 * temp;
temp2 = temp1 * temp;
// update for short periodics
var rk = r*(1.0 - 1.5 * temp2 * betal * this.x3thm1) + 0.5 * temp1 * this.x1mth2 * cos2u;
var uk = u-0.25 * temp2 * this.x7thm1 * sin2u;
var xnodek = xnode + 1.5 * temp2 * this.cosio * sin2u;
var xinck = this.xinc + 1.5 * temp2 * this.cosio * this.sinio * cos2u;
var rdotk = rdot - xn * temp1 * this.x1mth2 * sin2u;
var rfdotk = rfdot + xn * temp1 * (this.x1mth2 * cos2u + 1.5 * this.x3thm1);
// orientation vectors
var sinuk = Math.sin(uk);
var cosuk = Math.cos(uk);
var sinik = Math.sin(xinck);
var cosik = Math.cos(xinck);
var sinnok = Math.sin(xnodek);
var cosnok = Math.cos(xnodek);
var xmx = -sinnok * cosik;
var xmy = cosnok * cosik;
var ux = xmx * sinuk + cosnok * cosuk;
var uy = xmy * sinuk + sinnok * cosuk;
var uz = sinik * sinuk;
var vx = xmx * cosuk - cosnok * sinuk;
var vy = xmy * cosuk - sinnok * sinuk;
var vz = sinik * cosuk;
// position and velocity in km
this.x = (rk * ux) * this.xkmper;
this.y = (rk * uy) * this.xkmper;
this.z = (rk * uz) * this.xkmper;
this.xdot = (rdotk * ux + rfdotk * vx) * this.xkmper;
this.ydot = (rdotk * uy + rfdotk * vy) * this.xkmper;
this.zdot = (rdotk * uz + rfdotk * vz) * this.xkmper;
/**
* orbit period in seconds
* @type {float}
* @readonly
*/
this.period = this.twopi * Math.sqrt(Math.pow(this.aodp * this.xkmper , 3)/398600.4);
/**
* velocity in km per second
* @type {float}
* @readonly
*/
this.velocity = Math.sqrt(this.xdot*this.xdot + this.ydot*this.ydot + this.zdot*this.zdot) / 60; // kmps
// lat, lon and altitude
// based on http://www.celestrak.com/columns/v02n03/
a = 6378.137;
var b = 6356.7523142;
var R = Math.sqrt(this.x*this.x + this.y*this.y);
var f = (a - b)/a;
var gmst = orbits.util.gmst(date);
var e2 = ((2*f) - (f*f));
var longitude = Math.atan2(this.y, this.x) - gmst;
var latitude = Math.atan2(this.z, R);
var C;
var iterations = 20;
while(iterations--) {
C = 1 / Math.sqrt( 1 - e2*(Math.sin(latitude)*Math.sin(latitude)) );
latitude = Math.atan2 (this.z + (a*C*e2*Math.sin(latitude)), R);
}
/**
* Altitude in kms
* @type {float}
* @readonly
*/
this.altitude = (R/Math.cos(latitude)) - (a*C);
// convert from radii to degrees
longitude = (longitude / this.torad) % 360;
if(longitude > 180) longitude = 360 - longitude;
else if(longitude < -180) longitude = 360 + longitude;
latitude = (latitude / this.torad);
/**
* latitude in degrees
* @type {float}
* @readonly
*/
this.latitude = latitude;
/**
* longtitude in degrees
* @type {float}
* @readonly
*/
this.longitude = longitude;
};
/**
* Change the datetime, or null for to use current
* @param {Date} date
*/
orbits.Orbit.prototype.setDate = function(date) {
this.date = date;
};
/**
* get position
* @returns {float[]} [latitude, longitude]
*/
orbits.Orbit.prototype.getPosition = function() {
return [this.latitude, this.longitude];
};
/**
* get position in LatLng
* @returns {google.maps.LatLng}
*/
orbits.Orbit.prototype.getLatLng = function() {
return new google.maps.LatLng(this.latitude, this.longitude);
};
/**
* get altitude in km
* @returns {float}
*/
orbits.Orbit.prototype.getAltitude = function() {
return this.altitude;
};
/**
* get velocity in km per seconds
* @returns {float}
*/
orbits.Orbit.prototype.getVelocity = function() {
return this.velocity;
};
/**
*get period in seconds
* @returns {float}
*/
orbits.Orbit.prototype.getPeriod = function() {
return this.period;
};