Skip to content

Latest commit

 

History

History
164 lines (155 loc) · 4.34 KB

README.md

File metadata and controls

164 lines (155 loc) · 4.34 KB

Armstrong Numbers

Implementation of the Armstrong numbers (https://en.wikipedia.org/wiki/Narcissistic_number) search algorithm on Java.

The number S consists of M digits, for example, S = 370 and M (number of digits) = 3.
It is necessary to implement the logic of the method, which must be among natural numbers less than N (long) to find all numbers, satisfying the following criterion:
the number S is equal to the sum of its digits raised to the power of M. The program must return all such numbers in ascending order.

Example of the number:
370 = 3 * 3 * 3 + 7 * 7 * 7 + 0 * 0 * 0
8208 = 8 * 8 * 8 * 8 + 2 * 2 * 2 * 2 + 0 * 0 * 0 * 0 + 8 * 8 * 8 * 8
The execution time must not be more then 10 seconds and used memory limit is 50 mb.

Hardware

4 x Intel(R) Core(TM) i5 CPU 760 @ 2.80GHz
Memory: 15.7 GiB of RAM

Output v1 (java 7)

Execution time: 2234ms
Used memory: 5mb

Output v2 (java 8 + stream API)

Execution time: 2135ms
Used memory: 4mb

Output v3 (java.math.BigInteger)

Execution time: 2m33s
Used memory: 94mb

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 153
  11. 370
  12. 371
  13. 407
  14. 1634
  15. 8208
  16. 9474
  17. 54748
  18. 92727
  19. 93084
  20. 548834
  21. 1741725
  22. 4210818
  23. 9800817
  24. 9926315
  25. 24678050
  26. 24678051
  27. 88593477
  28. 146511208
  29. 472335975
  30. 534494836
  31. 912985153
  32. 4679307774
  33. 32164049650
  34. 32164049651
  35. 40028394225
  36. 42678290603
  37. 44708635679
  38. 49388550606
  39. 82693916578
  40. 94204591914
  41. 28116440335967
  42. 4338281769391370
  43. 4338281769391371
  44. 21897142587612075
  45. 35641594208964132
  46. 35875699062250035
  47. 1517841543307505039
  48. 3289582984443187032
  49. 4498128791164624869
  50. 4929273885928088826

These numbers exist for only 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 37, 38, and 39 digits.
The full list of the numbers is here: http://mathworld.wolfram.com/NarcissisticNumber.html

ArmstrongNumbersAll.java is used to find all armstrong numbers (based on java.math.BigInteger).

Output all numbers

n = 19

Execution time: 2m54s (java.lang.Long max value)

n = 20

Execution time: 4m38s

n = 21

Execution time: 7m53s

n = 23

Execution time: 21m6s

n = 24

Execution time: 31m27s

n = 25

Execution time: 47m47s

n = 26

Execution time: 70m49s (1.16h)

n = 27

Execution time: 103m59s (1.71h)

n = 28

Execution time: 145m3s (2.36h)

n = 29

Execution time: 205m3s (3.41h)

n = 30

Execution time: 285m12s (4.75h)

n = 31

Execution time: 395m20s (6.58h)

n = 32

Execution time: 551m26s (9.18h)

n = 33

Execution time: 764m19s (12.73h)

n = 34

Execution time: 1047m16s (17.45h)

n = 35

Execution time: 1429m46s (23.81h)

n = 36

Execution time: 1914m33s (31.9h)

n = 37

Execution time: 2536m56s (42.3h)

n = 38

Execution time: 2536m56s (31.9h)

n = 39

Execution time: > 3354m10s (55.9h)

ArmstrongNumbersAllV2.java is also based on java.math.BigInteger, but uses another search algorithm. This approach returns all numbers for n <= 40 in 245m17s (4h).

The rest of numbers:

  1. 63105425988599693916
  2. 128468643043731391252
  3. 449177399146038697307
  4. 21887696841122916288858
  5. 27879694893054074471405
  6. 27907865009977052567814
  7. 28361281321319229463398
  8. 35452590104031691935943
  9. 174088005938065293023722
  10. 188451485447897896036875
  11. 239313664430041569350093
  12. 1550475334214501539088894
  13. 1553242162893771850669378
  14. 3706907995955475988644380
  15. 3706907995955475988644381
  16. 4422095118095899619457938
  17. 121204998563613372405438066
  18. 121270696006801314328439376
  19. 128851796696487777842012787
  20. 174650464499531377631639254
  21. 177265453171792792366489765
  22. 14607640612971980372614873089
  23. 19008174136254279995012734740
  24. 19008174136254279995012734741
  25. 23866716435523975980390369295
  26. 1145037275765491025924292050346
  27. 1927890457142960697580636236639
  28. 2309092682616190307509695338915
  29. 17333509997782249308725103962772
  30. 186709961001538790100634132976990
  31. 186709961001538790100634132976991
  32. 1122763285329372541592822900204593
  33. 12639369517103790328947807201478392
  34. 12679937780272278566303885594196922
  35. 1219167219625434121569735803609966019
  36. 12815792078366059955099770545296129367
  37. 115132219018763992565095597973971522400
  38. 115132219018763992565095597973971522401