-
Notifications
You must be signed in to change notification settings - Fork 2
/
Population.cpp
333 lines (277 loc) · 8.4 KB
/
Population.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*
* Population.cpp
*
* Created on: Dec 3, 2016
* Author: rocco
*/
#include "Population.h"
Population::Population()
{
setGen();
srand(time(NULL));
numExperiments=1;
}
Population::Population(double setMonies, int numExp)
{
setGen();
srand(time(NULL));
startMonies = setMonies;
numExperiments = numExp;
}
Population::~Population()
{
for (int j=0; j < getSize(); j++)
{
delete Gen0[j];
}
}
void Population::copy(Population thisPop)
{
for (int k = 0; k < getSize(); k++)
{
addChildToPos(k, *thisPop.getIndividualAt(k));
}
}
void Population::resetGen()
{
for (int j=0; j < getSize(); j++)
{
delete Gen0[j];
Gen0[j] = new Individual();
}
}
void Population::setGen()
{
for (int j=0; j < getSize(); j++)
{
Gen0[j] = new Individual();
}
}
void *individualRun(void *threadArg)
{
//runFitnessAlg
Individual* currInd;
currInd = (Individual *) threadArg;
// run experiment
currInd->runFitnessAlg();
}
void Population::runIndividualFitnessAlgorithm()
{
// Set this up to run as a thread
// Use startMonies in this class to initiliaze the amount of starting money
// do runFitnessAlg(int numExp) for each individual
const int NUM_THREADS = 10; // change for a larger population
pthread_t threads[NUM_THREADS];
int errorCatch;
//non-threading
for (int j=0; j < 50; j++) ///////////////////////////////////////////////////////////// change Size here
{
cout << "Running individual# " << j << endl;
Gen0[j]->setMon(getStartingMonies());
Gen0[j]->setExp(getNumExp());
Gen0[j]->runFitnessAlg();
}
/*
for (int j=0; j < NUM_THREADS; j++)
{
Gen0[j]->setMon(getStartingMonies());
Gen0[j]->setExp(getNumExp());
errorCatch = pthread_create(&threads[j], NULL, individualRun, (void*)Gen0[j]);
if (errorCatch) { cout << "Error in thread " << errorCatch << endl; exit(-1); }
}
// Wait for threads to finish
for(int L=0; L < NUM_THREADS; L++)
{
pthread_join(threads[L],NULL);
}
*/
}
void Population::generateGeneration0()
{
// moving averages can vary from 1 - 200 days
// saving factor can vary from 50 - 5000
//srand(time(NULL));
double mov1, mov2, savingFactor;
for(int k=0; k < getSize(); k++)
{
mov1 = (rand()%200) +1;
mov2 = (rand()%200) +1;
savingFactor = (rand()%4950) +50;
Gen0[k]->setAttributeAt(0,mov1);
Gen0[k]->setAttributeAt(1,mov2);
Gen0[k]->setAttributeAt(2,savingFactor);
}
}
void Population::printPop()
{
for (int k=0; k < getSize(); k++)
{
cout << k << " : Moving1 = " << Gen0[k]->getAttributeAt(0) << " ";
cout << "Moving2 = " << Gen0[k]->getAttributeAt(1) << " ";
cout << "Saving Factor = " << Gen0[k]->getAttributeAt(2);
cout << " Fitness: " << Gen0[k]->getFitnessValue() << endl;
}
}
Individual* Population::getIndividualAt(int pos)
{
return Gen0[pos];
}
void Population::addChildToPos(int pos, Individual thisChild)
{
//delete Gen0[pos];
for (int k=0; k < 3; k++)
{
double value = thisChild.getAttributeAt(k);
Gen0[pos]->setAttributeAt(k, value);
}
}
int Population::getSize() { return sizeOfPop; }
int Population::getNumExp() { return numExperiments; }
Individual Population::randomlySelectFromPop()
{
// build roullete wheel based off of their fitness values
//srand(time(NULL));
double randNum = 0; // random number from 0 - 1
randNum = ((double) rand() / (RAND_MAX));
double summationOfFitnessInPop = getTotalFitnessFromPop(); // summation of all the fitness values in the population
double sumOfCheckedInd = 0; // summation of all the fitness values that have been traversed thus far
bool done = false;
if (summationOfFitnessInPop < 1) { cout << "ERROR!!"; exit(1); } // function called before setting population
Individual prev = *Gen0[0];
Individual curr = *Gen0[1];
int counter = 2;
// check starting case
if (randNum > 0 && randNum < (prev.getFitnessValue()/summationOfFitnessInPop))
{
return prev;
}
sumOfCheckedInd = prev.getFitnessValue();
while (!done)
{
if (sumOfCheckedInd/summationOfFitnessInPop < randNum &&
randNum <= (sumOfCheckedInd + curr.getFitnessValue())/summationOfFitnessInPop)
{
return curr;
}
else
{
sumOfCheckedInd+=curr.getFitnessValue();
//prev = curr;a
curr = *Gen0[counter];
counter++;
if (counter == 100) { done = true; } // avoid from accessing out of bounds. Should never happen though
}
}
}
Individual Population::reproduce(Individual father, Individual mother)
{
//srand(time(NULL));
int chooseFromFatherOrMother = ( rand() % 2) + 1;
int numAttributesToCopy = ( rand() % 2) + 1;
int whichAttributeToCopy1 = ( rand() % 3) + 1;
int whichAttributeToCopy2 = ( rand() % 3) + 1;
while(whichAttributeToCopy1 == whichAttributeToCopy2) // ensure unique attributes are copied
{
whichAttributeToCopy2 = ( rand() % 3) + 1;
}
double childMov1, childMov2, childSavingFactor;
childMov1 = childMov2 = childSavingFactor = -1; // flag that is has not yet been updated
if (chooseFromFatherOrMother == 1) // get attributes from mother first
{
//cout << "Choosing from mother first..." << endl;
if (numAttributesToCopy == 2)
{
// cout << "Copying attr1: " << whichAttributeToCopy1 << endl;
if (whichAttributeToCopy1 == 1) { childMov1 = mother.getAttributeAt(0); }
else if (whichAttributeToCopy1 == 2) { childMov2 = mother.getAttributeAt(1); }
else { childSavingFactor = mother.getAttributeAt(2); }
// cout << "Copying attr2: " << whichAttributeToCopy2 << endl;
if (whichAttributeToCopy2 == 1) { childMov1 = mother.getAttributeAt(0); }
else if (whichAttributeToCopy2 == 2) { childMov2 = mother.getAttributeAt(1); }
else { childSavingFactor = mother.getAttributeAt(2); }
}
else
{
// cout << "Copying attr1: " << whichAttributeToCopy1 << endl;
if (whichAttributeToCopy1 == 1) { childMov1 = mother.getAttributeAt(0); }
else if (whichAttributeToCopy1 == 2) { childMov2 = mother.getAttributeAt(1); }
else { childSavingFactor = mother.getAttributeAt(2); }
}
// Identify which attribute has not yet been inherited and get from father
if (childMov1 == -1) { childMov1 = father.getAttributeAt(0); }
if (childMov2 == -1) { childMov2 = father.getAttributeAt(1); }
if (childSavingFactor == -1) { childSavingFactor = father.getAttributeAt(2); }
}
else // get attributes from father
{
// cout << "Choosing from Father first..." << endl;
if (numAttributesToCopy == 2)
{
// cout << "Copying attr1: " << whichAttributeToCopy1 << endl;
if (whichAttributeToCopy1 == 1) { childMov1 = father.getAttributeAt(0); }
else if (whichAttributeToCopy1 == 2) { childMov2 = father.getAttributeAt(1); }
else { childSavingFactor = father.getAttributeAt(2); }
// cout << "Copying attr2: " << whichAttributeToCopy2 << endl;
if (whichAttributeToCopy2 == 1) { childMov1 = father.getAttributeAt(0); }
else if (whichAttributeToCopy2 == 2) { childMov2 = father.getAttributeAt(1); }
else { childSavingFactor = father.getAttributeAt(2); }
}
else
{
//// cout << "Copying attr1: " << whichAttributeToCopy1 << endl;
if (whichAttributeToCopy1 == 1) { childMov1 = father.getAttributeAt(0); }
else if (whichAttributeToCopy1 == 2) { childMov2 = father.getAttributeAt(1); }
else { childSavingFactor = father.getAttributeAt(2); }
}
// Identify which attribute has not yet been inherited and get from Mother
if (childMov1 == -1) { childMov1 = mother.getAttributeAt(0); }
if (childMov2 == -1) { childMov2 = mother.getAttributeAt(1); }
if (childSavingFactor == -1) { childSavingFactor = mother.getAttributeAt(2); }
}
// cout << "Done reproducing" << endl;
Individual child; child.setAttributeAt(0, childMov1); child.setAttributeAt(1, childMov2);
child.setAttributeAt(2, childSavingFactor); child.setFitnessValue(1);
return child;
}
Individual Population::mutate(Individual preMutant)
{
int geneToMutate = (rand() % 3) +1;
int mov1 = (rand()%200) +1;
int mov2 = (rand()%200) +1;
int savingFactor = (rand()%4950) +50;
if(geneToMutate == 1)
{
preMutant.setAttributeAt(0, mov1);
}
else if (geneToMutate == 2)
{
preMutant.setAttributeAt(1, mov2);
}
else
{
preMutant.setAttributeAt(2,savingFactor );
}
return preMutant;
}
Individual Population::getHighestIndividual()
{
Individual* best = Gen0[0];
for (int k=1; k < getSize(); k++)
{
if (best->getFitnessValue() < Gen0[k]->getFitnessValue())
{
best = Gen0[k];
}
}
return *best;
}
double Population::getStartingMonies() { return startMonies; }
double Population::getTotalFitnessFromPop()
{
double sum;
for (int j = 0; j < getSize(); j++)
{
sum += Gen0[j]->getFitnessValue();
}
return sum;
}