Skip to content

Latest commit

 

History

History
431 lines (395 loc) · 12.1 KB

demo_no-more-silos.adoc

File metadata and controls

431 lines (395 loc) · 12.1 KB

No More Silos - CDC demo

The slides that accompany this demo can be found here: https://speakerdeck.com/rmoff/no-more-silos-integrating-databases-and-apache-kafka

Running the test rig

  1. Bring up the stack

    git clone https://github.com/confluentinc/demo-scene.git
    cd no-more-silos
    docker-compose up -d

    This brings up the stack ready for use.

  2. Wait for Kafka Connect to be started

    bash -c '
    echo "Waiting for Kafka Connect to start listening on localhost ⏳"
    while [ $(curl -s -o /dev/null -w %{http_code} http://localhost:8083/connectors) -ne 200 ] ; do
      echo -e $(date) " Kafka Connect listener HTTP state: " $(curl -s -o /dev/null -w %{http_code} http://localhost:8083/connectors) " (waiting for 200)"
      sleep 5
    done
    echo -e $(date) " Kafka Connect is ready! Listener HTTP state: " $(curl -s -o /dev/null -w %{http_code} http://localhost:8083/connectors)
    '
  3. Make sure the connector plugins are available

    curl -s localhost:8083/connector-plugins|jq '.[].class'|egrep 'debezium.*mysql|JdbcSink'
    "io.confluent.connect.jdbc.JdbcSinkConnector"
    "io.debezium.connector.mysql.MySqlConnector"
  4. Launch MySQL CLI

    docker exec -it mysql bash -c 'mysql -u $MYSQL_USER -p$MYSQL_PASSWORD demo'

Part 01 - Query-Based CDC

MySQL to Kafka using JDBC Source connector

  1. In MySQL, examine the data

    DESCRIBE customers;
    SELECT ID, FIRST_NAME, LAST_NAME, EMAIL, UPDATE_TS FROM customers;
    +----+------------+-----------+----------------------------+---------------------+
    | ID | FIRST_NAME | LAST_NAME | EMAIL                      | UPDATE_TS           |
    +----+------------+-----------+----------------------------+---------------------+
    |  1 | Bibby      | Argabrite | bargabrite0@google.com.hk  | 2019-04-01 16:51:18 |
    |  2 | Auberon    | Sulland   | asulland1@slideshare.net   | 2019-04-01 16:51:18 |
    |  3 | Marv       | Dalrymple | mdalrymple2@macromedia.com | 2019-04-01 16:51:18 |
    |  4 | Nolana     | Yeeles    | nyeeles3@drupal.org        | 2019-04-01 16:51:18 |
    |  5 | Modestia   | Coltart   | mcoltart4@scribd.com       | 2019-04-01 16:51:18 |
    +----+------------+-----------+----------------------------+---------------------+
    5 rows in set (0.00 sec)
  2. Create the connector

    curl -X POST http://localhost:8083/connectors -H "Content-Type: application/json" -d '{
              "name": "source-jdbc-mysql-00",
              "config": {
                      "connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",
                      "connection.url": "jdbc:mysql://mysql:3306/demo",
                      "connection.user": "connect_user",
                      "connection.password": "asgard",
                      "topic.prefix": "mysql-00-",
                      "poll.interval.ms": 1000,
                      "tasks.max":1,
                      "mode":"timestamp",
                      "table.whitelist" : "demo.customers",
                      "timestamp.column.name": "UPDATE_TS",
                      "validate.non.null": false
                      }
              }'
  3. Check it’s running

    curl -s "http://localhost:8083/connectors?expand=info&expand=status" |
           jq '. | to_entries[] | [ .value.info.type, .key, .value.status.connector.state,.value.status.tasks[].state,.value.info.config."connector.class"]|join(":|:")' |
           column -s : -t| sed 's/\"//g'| sort
    source  |  source-datagen-item_details_01  |  RUNNING  |  RUNNING  |  io.confluent.kafka.connect.datagen.DatagenConnector
    source  |  source-jdbc-mysql-00            |  RUNNING  |  RUNNING  |  io.confluent.connect.jdbc.JdbcSourceConnector
  4. Examine the data

    docker run --net host --rm edenhill/kafkacat:1.5.0 \
            -b localhost:9092                          \
            -r http://localhost:8081                   \
            -s avro                                    \
            -t mysql-00-customers                      \
            -C -o beginning -u -q | jq -c '.'
  5. Split the screen to show Kafka topic output along with MySQL.

  6. Make changes in MySQL and observe that the Kafka topic (as shown by KSQL) updates automatically

    • Insert a new row in MySQL:

      INSERT INTO customers (ID, FIRST_NAME, LAST_NAME, EMAIL, GENDER, COMMENTS) VALUES (42, 'Rick', 'Astley', '', 'Male', '');
    • Insert a new row in MySQL:

      UPDATE customers SET EMAIL = '[email protected]' WHERE ID = 42;

Part 02 - Log-Based CDC

MySQL to Kafka using JDBC Source connector

  1. In MySQL, examine the data

    SELECT ID, FIRST_NAME, LAST_NAME, EMAIL, UPDATE_TS FROM customers;
    +----+------------+-----------+----------------------------+---------------------+
    | ID | FIRST_NAME | LAST_NAME | EMAIL                      | UPDATE_TS           |
    +----+------------+-----------+----------------------------+---------------------+
    |  1 | Bibby      | Argabrite | bargabrite0@google.com.hk  | 2019-04-01 16:51:18 |
    |  2 | Auberon    | Sulland   | asulland1@slideshare.net   | 2019-04-01 16:51:18 |
    |  3 | Marv       | Dalrymple | mdalrymple2@macromedia.com | 2019-04-01 16:51:18 |
    |  4 | Nolana     | Yeeles    | nyeeles3@drupal.org        | 2019-04-01 16:51:18 |
    |  5 | Modestia   | Coltart   | mcoltart4@scribd.com       | 2019-04-01 16:51:18 |
    | 42 | Rick       | Astley    | Never.gonna.give.you@up.com| 2019-04-01 17:59:43 |
    +----+------------+-----------+----------------------------+---------------------+
    5 rows in set (0.00 sec)
  2. Create the connector

    curl -i -X PUT -H "Accept:application/json" \
        -H  "Content-Type:application/json" http://localhost:8083/connectors/source-debezium-mysql-00/config \
        -d '{
              "connector.class": "io.debezium.connector.mysql.MySqlConnector",
              "database.hostname": "mysql",
              "database.port": "3306",
              "database.user": "debezium",
              "database.password": "dbz",
              "database.server.id": "42",
              "database.allowPublicKeyRetrieval":"true",
              "database.server.name": "asgard",
              "table.whitelist": "demo.customers",
              "database.history.kafka.bootstrap.servers": "kafka:29092",
              "database.history.kafka.topic": "asgard.dbhistory.demo" ,
              "include.schema.changes": "true"
        }'
  3. Check it’s running

    curl -s "http://localhost:8083/connectors?expand=info&expand=status" |
           jq '. | to_entries[] | [ .value.info.type, .key, .value.status.connector.state,.value.status.tasks[].state,.value.info.config."connector.class"]|join(":|:")' |
           column -s : -t| sed 's/\"//g'| sort
    source  |  source-datagen-item_details_01  |  RUNNING  |  RUNNING  |  io.confluent.kafka.connect.datagen.DatagenConnector
    source  |  source-debezium-mysql-00        |  RUNNING  |  RUNNING  |  io.debezium.connector.mysql.MySqlConnector
    source  |  source-jdbc-mysql-00            |  RUNNING  |  RUNNING  |  io.confluent.connect.jdbc.JdbcSourceConnector
  4. Examine the data with kafkacat

    docker run --net host --rm edenhill/kafkacat:1.5.0 \
            -b localhost:9092                          \
            -r http://localhost:8081                   \
            -s avro                                    \
            -t asgard.demo.customers                   \
            -C -o beginning -u -q | jq '.'
    {
      "before": null,
      "after": {
        "Value": {
          "id": 42,
          "first_name": {
            "string": "Rick"
          },
          "last_name": {
            "string": "Astley"
          },
          "email": {
            "string": "[email protected]"
          },
          "gender": {
            "string": "Male"
          },
          "comments": {
            "string": ""
          },
          "UPDATE_TS": {
            "string": "2019-10-23T16:29:53Z"
          }
        }
      },
      "source": {
        "version": "0.10.0.Final",
        "connector": "mysql",
        "name": "asgard",
        "ts_ms": 0,
        "snapshot": {
          "string": "last"
        },
        "db": "demo",
        "table": {
          "string": "customers"
        },
        "server_id": 0,
        "gtid": null,
        "file": "binlog.000002",
        "pos": 873,
        "row": 0,
        "thread": null,
        "query": null
      },
      "op": "c",
      "ts_ms": {
        "long": 1571848220368
      }
    }
  5. Split the screen to show Kafka topic output along with MySQL.

  6. Rerun kafkacat to show compact output

    docker run --net host --rm edenhill/kafkacat:1.5.0 \
            -b localhost:9092                          \
            -r http://localhost:8081                   \
            -s avro                                    \
            -t asgard.demo.customers                   \
            -C -o beginning -u -q | jq '.op, .before, .after'
  7. Make changes in MySQL and observe that the Kafka topic (as shown by KSQL) updates automatically

    • Update a new row in MySQL:

      UPDATE customers SET EMAIL = '[email protected]' WHERE ID = 42;
      UPDATE customers SET FIRST_NAME = 'BOB' WHERE ID = 42;
    • Delete a row in MySQL:

      DELETE FROM customers WHERE ID=2;

Optional - Stream/Table duality in KSQL

SET 'auto.offset.reset' = 'earliest';
CREATE STREAM CUSTOMERS_CDC_STREAM WITH (KAFKA_TOPIC='asgard.demo.customers', VALUE_FORMAT='AVRO');
CREATE STREAM CUSTOMERS_AFTER AS
  SELECT AFTER->ID AS ID,
         AFTER->FIRST_NAME AS FIRST_NAME,
         AFTER->LAST_NAME AS LAST_NAME,
         AFTER->EMAIL AS EMAIL,
         AFTER->GENDER AS GENDER,
         AFTER->COMMENTS AS COMMENTS
    FROM CUSTOMERS_CDC_STREAM;
CREATE STREAM CUSTOMERS_STREAM WITH (PARTITIONS=1) AS SELECT * FROM CUSTOMERS_AFTER PARTITION BY ID;
SELECT ROWKEY, ID FROM CUSTOMERS_STREAM EMIT CHANGES LIMIT 1;
CREATE TABLE CUSTOMERS_TABLE WITH (KAFKA_TOPIC='CUSTOMERS_STREAM', VALUE_FORMAT='AVRO');
  • In MySQL, query the state:

    mysql> SELECT ID, FIRST_NAME, LAST_NAME, EMAIL FROM customers WHERE ID=42;
    +----+------------+-----------+-----------------------------+
    | ID | FIRST_NAME | LAST_NAME | EMAIL                       |
    +----+------------+-----------+-----------------------------+
    | 42 | Rick       | Astley    | Never.gonna.give.you@up.com |
    +----+------------+-----------+-----------------------------+
    1 rows in set (0.00 sec)
  • In KSQL query the table:

    SET 'auto.offset.reset' = 'earliest';
    
    SELECT ID, FIRST_NAME, LAST_NAME, EMAIL FROM CUSTOMERS_TABLE WHERE ID=42 EMIT CHANGES;
    42 | Rick | Astley | Never.gonna.give.you@up.com | 2019-04-01T22:42:58Z
  • In KSQL query the stream:

    SET 'auto.offset.reset' = 'earliest';
    
    SELECT ID, FIRST_NAME, LAST_NAME, EMAIL FROM CUSTOMERS_STREAM WHERE ID=42 EMIT CHANGES;
    42 | Rick | Astley |
    42 | Rick | Astley | Never.gonna.give.you@up.com
    42 | Rick | Astley | r.astley@example.com
  • Show before/after records:

    SET 'auto.offset.reset' = 'earliest';
    
    SELECT OP, BEFORE->EMAIL, AFTER->EMAIL FROM CUSTOMERS_CDC_STREAM WHERE AFTER->ID=42 EMIT CHANGES;

Option - Stream/table joins

  • Join to a stream of events

    CREATE STREAM RATINGS WITH (KAFKA_TOPIC='ratings',VALUE_FORMAT='AVRO');
    SELECT MESSAGE, STARS, USER_ID FROM RATINGS EMIT CHANGES;
    SELECT R.RATING_ID, R.MESSAGE, R.STARS,
          C.ID, C.FIRST_NAME + ' ' + C.LAST_NAME AS FULL_NAME, C.EMAIL AS EMAIL
          FROM RATINGS R
            LEFT JOIN CUSTOMERS_TABLE C
            ON R.USER_ID = C.ROWKEY
          WHERE C.FIRST_NAME IS NOT NULL
          EMIT CHANGES;
    CREATE STREAM RATINGS_ENRICHED AS
    SELECT R.RATING_ID, R.MESSAGE, R.STARS,
          C.ID, C.FIRST_NAME + ' ' + C.LAST_NAME AS FULL_NAME, C.EMAIL AS EMAIL
          FROM RATINGS R
            LEFT JOIN CUSTOMERS_TABLE C
            ON R.USER_ID = C.ROWKEY
          WHERE C.FIRST_NAME IS NOT NULL;
    PRINT 'RATINGS_ENRICHED';