-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
59 lines (42 loc) · 1.51 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import streamlit as st
import pickle
import numpy as np
import sklearn
# import the model
pipe = pickle.load(open('pipe.pkl','rb'))
df = pickle.load(open('data.pkl','rb'))
st.title("Laptop Predictor")
# brand
company = st.selectbox('Brand',df['Manufacturer'].unique())
# type of laptop
type_of_laptop = st.selectbox('Type',df['Category'].unique())
# Ram
ram = st.selectbox('RAM(in GB)',[2,4,6,8,12,16,24,32,64])
# weight
weight = st.number_input('Weight of the Laptop')
# IPS
ips = st.selectbox('IPS',['No','Yes'])
# screen size
screen_size = st.number_input('Screen Size')
# resolution
resolution = st.selectbox('Screen Resolution',['1920x1080','1366x768','1600x900','3840x2160','3200x1800','2880x1800','2560x1600','2560x1440','2304x1440'])
#cpu
cpu = st.selectbox('CPU',df['CPU Brand'].unique())
hdd = st.selectbox('HDD(in GB)',[0,128,256,512,1024,2048])
ssd = st.selectbox('SSD(in GB)',[0,8,128,256,512,1024])
gpu = st.selectbox('GPU',df['GPU Brand'].unique())
os = st.selectbox('OS',df['Operating System'].unique())
if st.button('Predict Price'):
# query
ppi = None
if ips == 'Yes':
ips = 1
else:
ips = 0
X_res = int(resolution.split('x')[0])
Y_res = int(resolution.split('x')[1])
ppi = (((X_res**2) + (Y_res**2))**0.5)/screen_size
query = np.array([company,type_of_laptop,ram,os,weight,ips,ppi,cpu,hdd,ssd,gpu])
query = query.reshape(1,11)
# st.title("The predicted price of this configuration is " + str(int((pipe.predict(query)[0]))))
st.title(pipe.predict(query))