diff --git a/pkgdown.yml b/pkgdown.yml index 12163f54..8284d5ae 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -2,7 +2,7 @@ pandoc: 3.1.11 pkgdown: 2.1.1 pkgdown_sha: ~ articles: {} -last_built: 2024-10-23T09:26Z +last_built: 2024-10-28T07:45Z urls: reference: https://rjdverse.github.io/rjd3toolkit/reference article: https://rjdverse.github.io/rjd3toolkit/articles diff --git a/reference/add_usrdefvar.html b/reference/add_usrdefvar.html index 558bb834..8bc34e15 100644 --- a/reference/add_usrdefvar.html +++ b/reference/add_usrdefvar.html @@ -108,7 +108,7 @@

Details

"Seasonal": after the decomposition the effect is allocated to the seasonal component, like a Seasonal-outlier

  • "Series": after the decomposition the effect is allocated to the raw series: \(yc_t=y_t+ effect\)

  • -
  • "Seasonally Adjusted": after the decomposition the effect is allocated to +

  • "SeasonallyAdjusted": after the decomposition the effect is allocated to the seasonally adjusted series: \(sa_t=T+I+effect\)

  • @@ -125,19 +125,21 @@

    See alsoExamples

    # creating one or several external regressors (TS objects),
     # which will be gathered in one or several groups
    -iv1<-intervention_variable(12, c(2000, 1), 60,
    -starts = "2001-01-01", ends = "2001-12-01")
    -iv2<- intervention_variable(12, c(2000, 1), 60,
    -starts = "2001-01-01", ends = "2001-12-01", delta = 1)
    +iv1 <- intervention_variable(12, c(2000, 1), 60,
    +    starts = "2001-01-01", ends = "2001-12-01"
    +)
    +iv2 <- intervention_variable(12, c(2000, 1), 60,
    +    starts = "2001-01-01", ends = "2001-12-01", delta = 1
    +)
     # configuration 1: regressors in the same default group (named "r")
    -variables<-list("iv1"=iv1, "iv2"=iv2)
    +variables <- list("iv1" = iv1, "iv2" = iv2)
     # to use those regressors, input : name=r.iv1 and r.iv2 in add_usrdefvar function
     # configuration 2: group names are user-defined
     # here: regressors as a list of two groups (lists) reg1 and reg2
    -vars<-list(reg1=list(iv1 = iv1),reg2=list(iv2 = iv2) )
    +vars <- list(reg1 = list(iv1 = iv1), reg2 = list(iv2 = iv2))
     # to use those regressors, input : name=reg1.iv1 and name=reg2.iv2 in add_usrdefvar function
     # creating the modelling context
    -my_context<-modelling_context(variables=vars)
    +my_context <- modelling_context(variables = vars)
     # customize a default specification
     # init_spec <- rjd3x13::x13_spec("RSA5c")
     # regressors have to be added one by one
    diff --git a/reference/aggregate.html b/reference/aggregate.html
    index 3e5f75f9..a264a600 100644
    --- a/reference/aggregate.html
    +++ b/reference/aggregate.html
    @@ -76,7 +76,7 @@ 

    Value

    Examples

    -
    s = ABS$X0.2.09.10.M
    +    
    s <- ABS$X0.2.09.10.M
     # Annual sum
     aggregate(s, nfreq = 1, conversion = "Sum") # first and last years removed
     #> Time Series:
    diff --git a/reference/arima_difference.html b/reference/arima_difference.html
    index f3dc4bde..77680419 100644
    --- a/reference/arima_difference.html
    +++ b/reference/arima_difference.html
    @@ -64,8 +64,8 @@ 

    Value

    Examples

    -
    mod1 = arima_model(delta = c(1,-2,1))
    -mod2 = arima_model(variance=.01)
    +    
    mod1 <- arima_model(delta = c(1, -2, 1))
    +mod2 <- arima_model(variance = .01)
     diff <- arima_difference(mod1, mod2)
     sum <- arima_sum(diff, mod2)
     # sum should be equal to mod1
    diff --git a/reference/arima_model.html b/reference/arima_model.html
    index 34232dfb..a96123eb 100644
    --- a/reference/arima_model.html
    +++ b/reference/arima_model.html
    @@ -72,7 +72,7 @@ 

    Value

    Examples

    -
    model <- arima_model("trend", ar=c(1,-.8), delta = c(1,-1), ma=c(1,-.5), var=100)
    +    
    model <- arima_model("trend", ar = c(1, -.8), delta = c(1, -1), ma = c(1, -.5), var = 100)