-
Notifications
You must be signed in to change notification settings - Fork 0
/
pytorch-seq2seq.py
604 lines (449 loc) · 19.9 KB
/
pytorch-seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# -*- coding: utf-8 -*-
"""
NLP From Scratch: Translation with a Sequence to Sequence Network and Attention
*******************************************************************************
**Author**: `Sean Robertson <https://github.com/spro/practical-pytorch>`_
This is the third and final tutorial on doing "NLP From Scratch", where we
write our own classes and functions to preprocess the data to do our NLP
modeling tasks. We hope after you complete this tutorial that you'll proceed to
learn how `torchtext` can handle much of this preprocessing for you in the
three tutorials immediately following this one.
In this project we will be teaching a neural network to translate from
French to English.
::
[KEY: > input, = target, < output]
> il est en train de peindre un tableau .
= he is painting a picture .
< he is painting a picture .
> pourquoi ne pas essayer ce vin delicieux ?
= why not try that delicious wine ?
< why not try that delicious wine ?
> elle n est pas poete mais romanciere .
= she is not a poet but a novelist .
< she not not a poet but a novelist .
> vous etes trop maigre .
= you re too skinny .
< you re all alone .
"""
from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
import pandas as pd
from torch.utils.tensorboard import SummaryWriter
from sklearn.model_selection import train_test_split
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SOS_token = 0
EOS_token = 1
class Lang:
def __init__(self, name):
self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {0: "SOS", 1: "EOS"}
self.n_words = 2 # Count SOS and EOS
def addSentence(self, sentence):
for word in sentence.split(' '):
self.addWord(word)
def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
sys_random = random.SystemRandom()
from configparser import ConfigParser
config_file_name = 'config.ini'
def caption_file():
config = ConfigParser()
config.read(config_file_name)
return config.get('data', 'captions_path')
def readLangs():
print("Reading lines...")
# Read the file and split into lines
cap_csv = pd.read_csv(caption_file())
# Split every line into pairs and normalize
pairs = list(zip(cap_csv['raw_caption'], cap_csv['raw_label']))
# Reverse pairs, make Lang instances
captions = Lang('caps')
labels = Lang('labs')
# captions and labels are empty now.
return captions, labels, pairs
MAX_LENGTH = 60
def filterPair(p):
return len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1].split(' ')) < MAX_LENGTH
def filterPairs(pairs):
return [pair for pair in pairs if filterPair(pair)]
def prepareData():
# pairs is a list of (cap labels)
captions, labels, pairs = readLangs()
print("Read %s sentence pairs" % len(pairs))
pairs = filterPairs(pairs)
print("Trimmed to %s sentence pairs" % len(pairs))
print("Counting words...")
for pair in pairs:
# add words to both dictionaries (captions and labels)
captions.addSentence(pair[0])
labels.addSentence(pair[1])
print("Counted words:")
print(captions.name, captions.n_words)
print(labels.name, labels.n_words)
return captions, labels, pairs
input_lang, output_lang, pairs = prepareData()
print(sys_random.choice(pairs))
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output = embedded
output, hidden = self.gru(output, hidden)
return output, hidden
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
# self.embedding(input) = [320], therefore we have to reshape it to be [1, 1, 320]
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
# embedded[0] = [1, 320]
# hidden[0] = [1, 320]
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
# attn_weights = [1,60]
# it is batch-first
attn_applied = torch.bmm(attn_weights.unsqueeze(0), # [1, 1, 60 = MAX_LEN]
encoder_outputs.unsqueeze(0)) # [1, 60 = MAX_LEN, 320]
# attn_applied = [1, 1, 320]
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
#output = [1, 1, 320]
#hidden = [1, 1, 320]
output, dec_hid = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1) #self.out(output[0]) = [1, Vocab]
return output, dec_hid, attn_weights
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
def indexesFromSentence(lang, sentence):
return [lang.word2index[word] for word in sentence.split(' ')]
def tensorFromSentence(lang, sentence):
indexes = indexesFromSentence(lang, sentence)
indexes.append(EOS_token)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
def tensorsFromPair(pair):
input_tensor = tensorFromSentence(input_lang, pair[0])
target_tensor = tensorFromSentence(output_lang, pair[1])
return (input_tensor, target_tensor)
teacher_forcing_ratio = 0.5
import datetime
current_time = datetime.datetime.now().strftime("%m-%d-%Y-%H:%M:%S")
summary_writer = SummaryWriter(log_dir='logs/text-ae/' + current_time)
def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):
encoder_hidden = encoder.initHidden()
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
loss = 0
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(
input_tensor[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_hidden
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
# Teacher forcing: Feed the target as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
loss += criterion(decoder_output, target_tensor[di]) #target_tensor = [sent_len, 1] , dec_out = [1, vocab_len]
decoder_input = target_tensor[di] # Teacher forcing
else:
# Without teacher forcing: use its own predictions as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
topv, topi = decoder_output.topk(1)
decoder_input = topi.squeeze().detach() # detach from history as input
loss += criterion(decoder_output, target_tensor[di]) #output = [1, vocab]
if decoder_input.item() == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item() / target_length
######################################################################
# This is a helper function to print time elapsed and estimated time
# remaining given the current time and progress %.
#
import time
import math
def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
######################################################################
# The whole training process looks like this:
#
# - Start a timer
# - Initialize optimizers and criterion
# - Create set of training pairs
# - Start empty losses array for plotting
#
# Then we call ``train`` many times and occasionally print the progress (%
# of examples, time so far, estimated time) and average loss.
EPOCHS = 5
def train_epochs(encoder, decoder, n_epochs=EPOCHS, learning_rate=0.01):
encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate, momentum=0.5)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate, momentum=0.5)
train_set, val_set = train_test_split(pairs, train_size=0.8)
train_set, test_set = train_test_split(train_set, test_size=0.05)
criterion = nn.NLLLoss()
for epoch in range(0, n_epochs):
total_epoch_loss = 0
for i, pair in enumerate(train_set):
training_pair = tensorsFromPair(pair)
input_tensor = training_pair[0]
target_tensor = training_pair[1]
loss = train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion)
total_epoch_loss += loss
counter = epoch * len(train_set) + i
summary_writer.add_scalar('train-loss', loss, counter)
summary_writer.add_scalar('total train epoch loss', total_epoch_loss, epoch + 1)
for i, pair in enumerate(val_set):
valid_pair = tensorsFromPair(pair)
input_tensor = valid_pair[0]
target_tensor = valid_pair[1]
loss = valid(input_tensor, target_tensor, encoder,
decoder, criterion)
total_epoch_loss += loss
counter = epoch * len(val_set) + i
summary_writer.add_scalar('val-loss', loss, counter)
# summary_writer.add_scalar('total epoch loss', total_epoch_loss, epoch + 1)
def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
start = time.time()
plot_losses = []
print_loss_total = 0 # Reset every print_every
plot_loss_total = 0 # Reset every plot_every
#TODO: what happens if I change SGD to SGD or other optimizers?
encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
# be tedad n_iter ha pair entekhab mikone.
training_pairs = [tensorsFromPair(sys_random.choice(pairs))
for i in range(n_iters)]
#TODO: changing loss. ---> DONE
criterion = nn.NLLLoss()
# hala az rooye oun pair haee ke entekhab karde mikhoone
for iter in range(1, n_iters + 1):
training_pair = training_pairs[iter - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
# rooye ye voroudi train mikone loss ro mide.
loss = train(input_tensor, target_tensor, encoder,
decoder, encoder_optimizer, decoder_optimizer, criterion)
summary_writer.add_scalar('train-loss', loss, iter)
print_loss_total += loss
plot_loss_total += loss
if iter % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
iter, iter / n_iters * 100, print_loss_avg))
if iter % plot_every == 0:
plot_loss_avg = plot_loss_total / plot_every
plot_losses.append(plot_loss_avg)
plot_loss_total = 0
showPlot(plot_losses)
######################################################################
# Plotting results
# ----------------
#
# Plotting is done with matplotlib, using the array of loss values
# ``plot_losses`` saved while training.
#
import matplotlib.pyplot as plt
# plt.switch_backend('agg')
import matplotlib.ticker as ticker
import numpy as np
def showPlot(points):
plt.figure()
fig, ax = plt.subplots()
# this locator puts ticks at regular intervals
loc = ticker.MultipleLocator(base=0.2)
ax.yaxis.set_major_locator(loc)
plt.plot(points)
def valid(input_tensor, target_tensor, encoder,
decoder, criterion, max_length=MAX_LENGTH):
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
with torch.no_grad():
encoder_hidden = encoder.initHidden()
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
loss = 0
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(
input_tensor[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_hidden
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
topv, topi = decoder_output.topk(1)
decoder_input = topi.squeeze().detach() # detach from history as input
loss += criterion(decoder_output, target_tensor[di]) #output = [1, vocab]
if decoder_input.item() == EOS_token:
break
return loss.item() / target_length
######################################################################
# Evaluation
# ==========
#
# Evaluation is mostly the same as training, but there are no targets so
# we simply feed the decoder's predictions back to itself for each step.
# Every time it predicts a word we add it to the output string, and if it
# predicts the EOS token we stop there. We also store the decoder's
# attention outputs for display later.
#
def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
with torch.no_grad():
input_tensor = tensorFromSentence(input_lang, sentence)
input_length = input_tensor.size()[0]
encoder_hidden = encoder.initHidden()
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei],
encoder_hidden)
encoder_outputs[ei] += encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device) # SOS
decoder_hidden = encoder_hidden
decoded_words = []
decoder_attentions = torch.zeros(max_length, max_length)
for di in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
if topi.item() == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(output_lang.index2word[topi.item()])
decoder_input = topi.squeeze().detach()
return decoded_words, decoder_attentions[:di + 1]
######################################################################
# We can evaluate random sentences from the training set and print out the
# input, target, and output to make some subjective quality judgements:
#
def evaluateRandomly(encoder, decoder, n=10):
for i in range(n):
pair = sys_random.choice(pairs)
print('>', pair[0])
print('=', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0])
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print('')
######################################################################
# Training and Evaluating
# =======================
#
# With all these helper functions in place (it looks like extra work, but
# it makes it easier to run multiple experiments) we can actually
# initialize a network and start training.
#
# Remember that the input sentences were heavily filtered. For this small
# dataset we can use relatively small networks of 256 hidden nodes and a
# single GRU layer. After about 40 minutes on a MacBook CPU we'll get some
# reasonable results.
#
# .. Note::
# If you run this notebook you can train, interrupt the kernel,
# evaluate, and continue training later. Comment out the lines where the
# encoder and decoder are initialized and run ``trainIters`` again.
#
hidden_size = 320
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)
# trainIters(encoder1, attn_decoder1, 8000, print_every=800)
train_epochs(encoder1, attn_decoder1)
######################################################################
#
evaluateRandomly(encoder1, attn_decoder1)
######################################################################
# Visualizing Attention
# ---------------------
#
# A useful property of the attention mechanism is its highly interpretable
# outputs. Because it is used to weight specific encoder outputs of the
# input sequence, we can imagine looking where the network is focused most
# at each time step.
#
# You could simply run ``plt.matshow(attentions)`` to see attention output
# displayed as a matrix, with the columns being input steps and rows being
# output steps:
#
output_words, attentions = evaluate(
encoder1, attn_decoder1, "an orange colored chair with a black frame and arm rests")
plt.matshow(attentions.numpy())
######################################################################
# For a better viewing experience we will do the extra work of adding axes
# and labels:
#
def showAttention(input_sentence, output_words, attentions):
# Set up figure with colorbar
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(attentions.numpy(), cmap='bone')
fig.colorbar(cax)
# Set up axes
ax.set_xticklabels([''] + input_sentence.split(' ') +
['<EOS>'], rotation=90)
ax.set_yticklabels([''] + output_words)
# Show label at every tick
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
plt.show()
def evaluateAndShowAttention(input_sentence):
output_words, attentions = evaluate(
encoder1, attn_decoder1, input_sentence)
print('input =', input_sentence)
print('output =', ' '.join(output_words))
showAttention(input_sentence, output_words, attentions)
evaluateAndShowAttention("half egg chair red in color with black base ")
evaluateAndShowAttention("cabinet is tall made of wood")
evaluateAndShowAttention("this is a gray lamp with four bulbs")
evaluateAndShowAttention("a grey chair with one cushion and wooden arm rests that wall off into solid grey squares particularly box like in appearance")