-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog-loss-applet.js
755 lines (619 loc) · 27.9 KB
/
log-loss-applet.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
var lineFit = (function() {
var exports = {};
////////////////////////////////// global variables
//d3 chart components
var chart;
var xMin = -20;
var xMax = 20;
var yMin = -10;
var yMax = 10;
var outer_height = 300;
var outer_width = 500;
var margin = { top: 20, right: 20, bottom: 20, left: 20 }
var chart_width = outer_width - margin.left - margin.right;
var chart_height = outer_height -margin.top - margin.bottom;
var x_scale = d3.scale.linear().domain([xMin,xMax]).range([0,chart_width]);
var y_scale = d3.scale.linear().domain([yMin,yMax]).range([chart_height,0]);
var x_scale2 = d3.scale.linear().domain([0,chart_width]).range([xMin,xMax]);
var y_scale2 = d3.scale.linear().domain([chart_height,0]).range([yMin,yMax]);
////////////////////////////////// helper functions
//rounds a number (number) to the specified amount of decimal points (decimals)
function round_number(number,decimals){
return Math.round(number*Math.pow(10,decimals))/Math.pow(10,decimals)
}
//creates a range of values from start to stop in step sized increments
function range(start, stop, step){
if (typeof stop=='undefined'){
// one param defined
stop = start;
start = 0;
};
if (typeof step=='undefined'){
step = 1;
};
if ((step>0 && start>=stop) || (step<0 && start<=stop)){
return [];
};
var result = [];
for (var i=start; step>0 ? i<stop : i>stop; i+=step){
result.push(i);
};
return result;
};
// sigmoid function
function sigmoid(z) {
let g = math.eval(`1 ./ (1 + e.^-z)`, {
z,
});
return g;
}
function sigmoid_2(z,coefficients){
let p = coefficients[1]*z + coefficients[0];
let g = math.eval(`1 ./ (1 + e.^-p)`, {
p,
});
return g;
}
/////////////////////////////////// set up div functions
/* Model that contains instance variables:
pointList - points to be fitted, one array of many [x,y] arrays
currentCoeffs - [a,b] of y = ax + b
functions:
add_point - adds a point to pointList
replace_point - takes an index and new x and y coordinates and replaces the point at the index with the new coordinates
clear_points - empties the pointList
getIndexOf - takes x and y coordinates and gets the index of the point in the pointList
get_point_list - returns the pointList
change_line - takes new coefficients to change currentCoeffs to
change_a - changes the first entry in currentCoeffs to the input
change_b - changes the second entry in currentCoeffs to the input
get_a - returns the a value
get_b - returns the b value
getCoeffs - return current line coefficients
randomize_points - generate a number of random points to add to pointList
make_random_point - makes a random point between xMax,xMin and yMax,yMin
findError - returns the error between a point and the line
*/
function Model() {
var pointList = []; //array of [x,y] arrays
var currentCoeffs = [0,0]; //[a,b] where a and b are from y = ax + b
function add_point(point){ // add a point
pointList.push([point[0],point[1]]);
}
function replace_point(index,x,y){
delete pointList[index];
pointList[index] = [x,y];
}
function getIndexOf(x,y){
for (var i = 0; i < pointList.length; i++) {
if(pointList[i][0] == x && pointList[i][1] == y)
return i;
};
return -1;
};
function get_point_list(){
return pointList;
}
function change_line(newCoeffs){ //change the coefficients of the best fit line
currentCoeffs = newCoeffs;
}
function change_a(a){
currentCoeffs[1] = a;
}
function change_b(b){
currentCoeffs[0] = b;
}
function get_a(){
return currentCoeffs[1];
}
function get_b(){
return currentCoeffs[0];
}
function getCoeffs(){ //return the coefficients of the current best fit line
return currentCoeffs;
}
function randomize_points(number){
pointList = [];
yMin = 0;
yMax = 1;
xMax = 10;
xMin = -10;
for(var i=0; i<number; i++){
pointList.push(make_random_point());
}
return pointList;
}
function make_random_point(){
var x = Math.random()*xMax;
var isNeg = Math.random();
if(isNeg>0.5){
x = (-1)*x;
}
var y = Math.random()*yMax;
if(y>=0.5){
y = 1;
}
else{
y = 0;
}
return [round_number(x,2),round_number(y,2)]
}
//finds the vertical error between a point and the line
function findError(point){
var error = point[1]-lineAt(point[0]);
return error;
}
//returns the y value of the line at a point
function lineAt(x){
return sigmoid((currentCoeffs[1]*x)+currentCoeffs[0]);
}
//sums the squared vertical error from each point to the line
function sumOfSquares(){
var sumOfSquareError = 0;
for(var i=0; i<pointList.length; i++){
sumOfSquareError += Math.pow(findError(pointList[i]),2);
}
return sumOfSquareError;
}
// finds the error of the logistic model
function costFunctionLog(){
const m = pointList.length
let total_cost = 0
for (var i=0; i<pointList.length; i++){
let h = sigmoid((currentCoeffs[1]*pointList[i][0])+currentCoeffs[0]);
let cost = ((-pointList[i][1] * Math.log(h)) - (1-pointList[i][1])*Math.log(1-h));
total_cost += cost;
}
console.log("cost:" + (1/m) * total_cost)
return (1/m) * total_cost;
}
//returns the array of points and their squared error
function points_with_square_error(){
var new_list = [];
for(var i=0; i<pointList.length; i++){
new_list.push([{y: Math.pow(findError(pointList[i]),2)}])
}
return new_list;
}
//returns the array of points and their absolute error
function points_with_abs_error(){
var new_list = [];
for(var i=0; i<pointList.length; i++){
new_list.push([{y: findError(pointList[i])}])
}
return new_list;
}
function point_log_loss(){
const m = pointList.length
var new_list = [];
for(var i=0; i<pointList.length; i++){
let h = sigmoid((currentCoeffs[1]*pointList[i][0])+currentCoeffs[0]);
let cost = (1/m) * ((-pointList[i][1] * Math.log(h)) - (1-pointList[i][1])*Math.log(1-h));
new_list.push([{y: cost}])
}
return new_list;
}
//finds the best fit for the points on the graph
function bestFit(){
var lineCoeffs; //coefficients of y=sigmoid(ax+b) in the form [a,b]
lineCoeffs = logistic_regression();
return lineCoeffs;
}
// Logistic regression algorithm adapted from Robin Wieruch
function logistic_regression()
{
// sigmoid function
function sigmoid(z) {
let g = math.eval(`1 ./ (1 + e.^-z)`, {
z,
});
return g;
}
// cost function (log-loss)
function costFunction(theta, X, y) {
const m = y.size()[0];
let h = sigmoid(math.eval(`X * theta`, {
X,
theta,
}));
const cost = math.eval(`(1 / m) * (-y' * log(h) - (1 - y)' * log(1 - h))`, {
h,
y,
m,
});
const grad = math.eval(`(1 / m) * (h - y)' * X`, {
h,
y,
m,
X,
});
return { cost, grad };
}
// gradient descent function
function gradientDescent(X, y, theta, ALPHA, ITERATIONS) {
const m = y.size()[0];
for (let i = 0; i < ITERATIONS; i++) {
let h = sigmoid(math.eval(`X * theta`, {
X,
theta,
}));
theta = math.eval(`theta - ALPHA / m * ((h - y)' * X)'`, {
theta,
ALPHA,
m,
X,
y,
h,
});
}
return theta;
}
var X_array = [];
var y_array = [];
// grab x values and y values from pointList
for(i=0;i<pointList.length;i++)
{
// this is our data pair
x_val = pointList[i][0]; y_val = pointList[i][1];
X_array.push([x_val]);
y_array.push([y_val]);
}
let X = math.matrix(X_array);
let y = math.matrix(y_array);
let m = y.size()[0];
let n = 1;
// Add Intercept Term
X = math.concat(math.ones([m, 1]).valueOf(), X);
// initialize theta to 0
let theta = Array(n + 1).fill().map(() => [0]);
let { cost: untrainedThetaCost, grad } = costFunction(theta, X, y);
// set alpha value (learning rate) and number of iterations
const ALPHA = 0.001;
const ITERATIONS = 400;
theta = [[0], [0]];
theta = gradientDescent(X, y, theta, ALPHA, ITERATIONS);
const { cost: trainedThetaCost } = costFunction(theta, X, y)
return [theta['_data'][0][0],theta['_data'][1][0]] // trainedThetaCost
}
//sums the errors of the points and returns optimized a and b for y = ax + b
function linear_regression()
{
var i, x, y,
sumx=0, sumy=0, sumx2=0, sumy2=0, sumxy=0,
a, b;
var count = pointList.length;
for(i=0;i<pointList.length;i++)
{
// this is our data pair
x_val = pointList[i][0]; y_val = pointList[i][1];
X.push(x_val)
y.push(y_val)
}
// note: the denominator is the variance of the random variable X
// the only case when it is 0 is the degenerate case X==constant
var b = (sumy*sumx2 - sumx*sumxy)/(count*sumx2-sumx*sumx);
var a = (count*sumxy - sumx*sumy)/(count*sumx2-sumx*sumx);
return [a,b];
}
//finds the statistical variance of the points
function get_variance(){
var n = pointList.length;
if(n ==0){
return 0;
}
var sum = 0;
for(var i =0; i<n; i++){
sum += pointList[i][0];
}
var mean = sum/n;
var variance = 0;
for(var i =0; i<n; i++){
variance += Math.pow(pointList[i][0]-mean,2);
}
return variance;
}
return {add_point: add_point, get_point_list: get_point_list, change_line: change_line, getCoeffs: getCoeffs, change_a: change_a, get_a: get_a, change_b: change_b, get_b: get_b, findError: findError, lineAt: lineAt, bestFit: bestFit, linear_regression: logistic_regression, costFunctionLog: costFunctionLog, get_variance: get_variance, points_with_square_error: points_with_square_error, getIndexOf: getIndexOf, points_with_abs_error: points_with_abs_error, point_log_loss: point_log_loss, randomize_points: randomize_points, replace_point: replace_point};
}
/* View that controls how the content is displayed to the user.
contains instance variables:
color_scale - a d3 object that converts numbers into colors
functions:
setupLineControls
setupZeroDegreeControls
displayLine
updatePointsOnGraph
displayErrorInfo
removeErrorInfo
updateEquation
turnErrorDisplayOn
turnErrorDisplayOff
graph
updateBestFitDisplay
updateDisplay
*/
function View(div,model) {
var color_scale = d3.scale.linear()
.domain([0, 1])
.range(['#61A72D','#CC0000']);
var tooltip = d3.select("body").append("div").attr("class","point-error").text("");
var aSlider,bSlider,cSlider;
//initialize the display as dealing with just lines
aSlider = $(".a-slider").slider({ min: -10, max: 10, step: .01, slide: function( event, ui ) {
if ($('.plot-fit').prop('checked')==true){
$('.plot-fit').attr('checked', false);
}
model.change_a(ui.value);
$('.a-label').html(ui.value);
updateDisplay();
}
});
bSlider = $(".b-slider").slider({ min: 1.5*yMin, max: 1.5*yMax, step: .01,
slide: function( event, ui ) {
if ($('.plot-fit').prop('checked')==true){
$('.plot-fit').attr('checked', false);
}
model.change_b(ui.value);
$('.b-label').html(ui.value);
updateDisplay();
},
});
setupLineControls();
setupButtons();
setupGraph(-10,10,0,1);
displayLine([0,0],false);
//controls for when the user wants to plot a first-order line
function setupLineControls(){
$('.a-header').show();
$('.a-label').show();
aSlider.css("width", "80%");
aSlider.show();//.slider( "enable" );
$('.b-header').show();
$('.b-label').show();
bSlider.css("width", "80%");
bSlider.show();
aSlider = $(".a-slider").slider({ min: -10, max: 10, step: .01, slide: function( event, ui ) {
if ($('.plot-fit').prop('checked')==true){
$('.plot-fit').attr('checked', false);
}
model.change_a(ui.value);
$('.a-label').html(ui.value);
updateDisplay();
}
});
aSlider.slider('option','value',model.get_a());
bSlider.slider('option','value',model.get_b());
$('.b-label').html(round_number(model.get_b(),2));
$('.a-label').html(round_number(model.get_a(),2));
if($('.plot-fit').prop("checked")){
updateBestFitDisplay(true);
turnErrorDisplayOn(false);
}
if(chart !== undefined){
updateDisplay();
}
}
//sets up the buttons
function setupButtons(){
$('.plot-fit').on("click",function(){
updateDisplay()
});
$('.randomize').on("click",function(){
$(".alert").remove();
model.randomize_points($(".point-number").val());
setupGraph(xMin,xMax,yMin,yMax);
updateDisplay()
});
}
function make_sigmoid_func(coef,intercept){
var pow = Math.pow, e = Math.E;
return (function(xi) {
return 1/(1+pow(e,-(xi*coef + intercept)))
});
}
//takes coefficients to y=ax+b and displays the corresponding on the graph
function displayLine(coefficients,animate){
if(!animate){
chart.selectAll(".best-fit").data(range(xMin,xMax,0.1)).remove();
chart.selectAll(".best-fit").data(coefficients).remove();
sig_vals = []
for (let i = -10; i <= 10; i++){
sig_vals.push([i,sigmoid_2(i,coefficients)])
}
var lineFunction = d3.svg.line()
.x(function(d){return x_scale(d[0])})
.y(function(d){return y_scale(d[1])})
.interpolate("basis");
chart.selectAll(".best-fit").data(coefficients).enter().append("path").attr("class", "best-fit").attr("d",lineFunction(sig_vals)).attr("fill", "none");
turnErrorDisplayOff();
turnErrorDisplayOn(false);
}
else{
var y1 = coefficients[0]*xMin+coefficients[1];
var y2 = coefficients[0]*xMax+coefficients[1];
if(chart.selectAll(".best-fit")[0].length> 0){
chart.selectAll(".best-fit").transition().duration(750).attr('x1', x_scale(xMin)).attr('x2', x_scale(xMax)).attr('y1', y_scale(y1)).attr('y2',y_scale(y2));
}
else{
chart.selectAll(".best-fit").data(coefficients).enter().append("line").attr("class", "best-fit").attr('x1', x_scale(xMin)).attr('x2', x_scale(xMax)).attr('y1', y_scale(y1)).attr('y2',y_scale(y2));
}
turnErrorDisplayOn(true);
}
}
//plots all the points in the model's pointList to the svg
function updatePointsOnGraph(){
chart.selectAll(".datapoint").remove();
var points = model.get_point_list();
var point_index;
chart.selectAll(".datapoint").data(points).enter().append("circle")
.attr("class", "datapoint")
.attr("cx", function(d){return x_scale(d[0])})
.attr("cy", function(d){return y_scale(d[1])})
.on("mouseover", function(d){
point_index = model.getIndexOf(d[0],d[1]);
$('.graphic > .translation > .layer:nth-of-type('+(point_index+1)+')').css("stroke","black");
$('.graphic > .translation > .layer:nth-of-type('+(point_index+1)+')').css("stroke","blue").css("stroke-width","3").css("stroke","5,3");
})
.on("mousemove", function(){
tooltip.style("top",(d3.event.pageY+10)+"px").style("left",(d3.event.pageX+10)+"px");
})
.on("mouseout",function(){
$('tr').find('#'+point_index).closest("tr").css("outline","none");
$('.graphic > .translation > .layer:nth-of-type('+(point_index+1)+')').css("stroke","none");
tooltip.style("visibility", "hidden");
})
.attr("id", function(d){
point_index = model.getIndexOf(d[0],d[1]);
return point_index;
})
.style("fill",'blue')
.call(move)
.attr("r", "4");
}
//shows the total error and sum of squares error
function displayErrorInfo(){
$(".info-container").empty();
$(".info-container").append("<div class='row-fluid'><span class = 'squared'></span></div>");
console.log("coefficients:" + model.getCoeffs())
$(".squared").html("Log-Loss: " +round_number(model.costFunctionLog(),2));
}
//updates the displays equation to have the proper a, b
function updateEquation(){
var coefficients = model.getCoeffs();
$('.equation').html("y = sigmoid(<span class='a-display' contenteditable = 'true'>"+round_number(coefficients[1],2)+"</span>x + <span class='b-display' contenteditable = 'true'>" + round_number(coefficients[0],2) + "</span>)");
var contentsA = $('.a-display').html();
$('.a-display').blur(function() {
if (contentsA!=$(this).html()){
model.change_a(parseFloat($(this).html()));
contentsA = $(this).html();
aSlider.slider("option","value",model.get_a());
$('.a-label').html(round_number(model.get_a(),2));
updateDisplay();
}
});
var contentsB = $('.b-display').html();
$('.b-display').blur(function() {
if (contentsB!=$(this).html()){
model.change_b(parseFloat($(this).html()));
contentsB = $(this).html();
bSlider.slider("option","value",model.get_b());
$('.b-label').html(round_number(model.get_b(),2));
updateDisplay();
}
});
}
function removeErrorInfo(){
$(".info-container").empty();
$(".squared").popover('disable');
}
//adds vertical bars from point to best-fit line (with color scale that displays how much error)
function turnErrorDisplayOn(animate){
if(!animate){
chart.selectAll(".error-line").data(model.get_point_list()).enter().append("line").attr("class", "error-line").attr('x1', function(d){return x_scale(d[0])}).attr('x2', function(d){ return x_scale(d[0])}).attr('y1', function(d){ return y_scale(d[1]);}).attr('y2',function(d){ return y_scale(model.lineAt(d[0]));}).style("stroke", function(d) {return color_scale(model.findError(d)); });
}
else{
chart.selectAll(".error-line").data(model.get_point_list()).transition().duration(750).attr('x1', function(d){return x_scale(d[0])}).attr('x2', function(d){ return x_scale(d[0])}).attr('y1', function(d){ return y_scale(d[1])}).attr('y2',function(d){ return y_scale(model.lineAt(d[0]))}).style("stroke", function(d) {return color_scale(model.findError(d)); });
}
displayErrorInfo()
}
var move = d3.behavior.drag().on("drag",drag)
function drag(){
var dragPoint = d3.select(this);
dragPoint
.attr("cx",function(){return d3.event.dx + parseInt(dragPoint.attr("cx"));})
.attr("cy",function(){return d3.event.dy +parseInt(dragPoint.attr("cy"));})
var newX = x_scale2(parseInt(dragPoint.attr("cx")));
var newY = y_scale2(parseInt(dragPoint.attr("cy")));
model.replace_point(dragPoint.attr("id"), newX, newY);
updateDisplay();
}
//removes vertical bars from point to best-fit line
function turnErrorDisplayOff(){
chart.selectAll(".error-line").remove();
removeErrorInfo()
}
//displays the graph of sum of squared error, color coded to show which point contributes which block of error
function graph(){
$(".graph-container").empty();
//var maxValue = model.get_variance()*5;
var maxValue = 10;
//var title = "Sum of Squares";
var data = model.point_log_loss();
var normal_error = model.points_with_abs_error();
var graph_outer_width = 50;
var graph_outer_height = 300;
var graph_margin = { top: graph_outer_width/8, right: 30, bottom: graph_outer_width/8, left: 0 }
var graph_chart_width = graph_outer_width - graph_margin.left - graph_margin.right;
var graph_chart_height = graph_outer_height -graph_margin.top - graph_margin.bottom;
var graph_y_scale = d3.scale.linear().domain([0,maxValue]).range([graph_chart_height,0]);
var graph_chart = d3.select(".graph-container").append("svg").attr("class","graphic").attr("height", graph_outer_height).attr("width",graph_outer_width).append("g").attr("class","translation").attr("transform","translate(" + (graph_margin.left+graph_margin.right) + "," + (graph_margin.top + graph_margin.bottom -5)+ ")");
graph_chart.selectAll(".y-scale-label").data(graph_y_scale.ticks(4)).enter().append("text").attr("class", "y-scale-label").attr("x",graph_margin.left/2).attr('y',graph_y_scale).attr("text-anchor","end").attr("dy","0.3em").attr("dx",-graph_margin.left/2).text(function(d){return d});
if(data.length>0){
var stack = d3.layout.stack();
var stacked_data = stack(data);
var layer_groups = graph_chart.selectAll(".layer").data(stacked_data).enter().append("g").attr("class", "layer");
var rects = layer_groups.selectAll('rect').data(function(d){console.log(d); return d}).enter().append('rect').attr("x",0).style("fill", function(d, i, j) {return color_scale(data[j][0].y);}).attr("height", 0).attr("y", function(d){return graph_y_scale(d.y0)}).attr("y", function(d){return graph_y_scale(d.y0+d.y)}).attr("width", graph_chart_width).attr("height", function(d){ return graph_y_scale(d.y0) - graph_y_scale(d.y0+d.y); });
}
}
function showCorrectSliders(){
var coefficients = model.getCoeffs();
aSlider.slider("option","value",coefficients[1]);
$('.a-label').html(round_number(coefficients[1],2));
bSlider.slider("option","value",coefficients[0]);
$('.b-label').html(round_number(coefficients[0],2));
}
//plots the best fit line
function updateBestFitDisplay(animate){
var coeffs = model.bestFit()
model.change_line(coeffs);
updateEquation();
}
//updates the points, error bars, graph, equation
function updateDisplay(){
updatePointsOnGraph();
if($('.plot-fit').prop("checked")){
updateBestFitDisplay(true);
}
showCorrectSliders();
displayLine(model.getCoeffs(),false);
turnErrorDisplayOn(false);
displayErrorInfo();
updateEquation();
graph();
}
return {displayLine: displayLine, displayErrorInfo: displayErrorInfo, updateBestFitDisplay: updateBestFitDisplay, updateEquation: updateEquation, updatePointsOnGraph: updatePointsOnGraph, updateDisplay: updateDisplay};
}
//set up svg with axes and labels
function setupGraph(xMin,xMax,yMin,yMax){
xMin = xMin;
xMax = xMax;
yMin = yMin;
yMax = yMax;
x_scale = d3.scale.linear().domain([xMin,xMax]).range([0,chart_width]);
y_scale = d3.scale.linear().domain([yMin,yMax]).range([chart_height,0]);
x_scale2 = d3.scale.linear().domain([0,chart_width]).range([xMin,xMax]);
y_scale2 = d3.scale.linear().domain([chart_height,0]).range([yMin,yMax]);
$(".chart-container").empty();
chart = d3.select(".chart-container").append("svg").attr("class","chart").attr("height", outer_height).attr("width",outer_width).append("g").attr("transform","translate(" + margin.left + "," + margin.top + ")");
chart.selectAll(".y-line").data(y_scale.ticks(10)).enter().append("line").attr("class", "y-line").attr('x1', 0).attr('x2', chart_width).attr('y1', y_scale).attr('y2',y_scale);
chart.selectAll(".x-line").data(x_scale.ticks(10)).enter().append("line").attr("class", "x-line").attr('x1', x_scale).attr('x2', x_scale).attr('y1', 0).attr('y2',chart_height);
chart.selectAll(".y-scale-label").data(y_scale.ticks(10)).enter().append("text").attr("class", "y-scale-label").attr("x",x_scale(0)).attr('y',y_scale).attr("text-anchor","end").attr("dy","0.3em").attr("dx","0.5em").text(String);
chart.selectAll(".x-scale-label").data(x_scale.ticks(10)).enter().append("text").attr("class", "x-scale-label").attr("x",x_scale).attr('y',y_scale(0)).attr("text-anchor","end").attr("dy","0.3em").attr("dx","0.5em").text(String);
}
//setup main structure of app
function setup(div) {
var model = Model();
var view = View(div, model);
//initializes a nice little set of 4 points to begin with
model.randomize_points(8);
model.change_a(1)
view.updateDisplay();
};
exports.setup = setup;
exports.round_number = round_number;
exports.model = Model;
exports.view = View;
return exports;
}());
$(document).ready(function() {
lineFit.setup();
});