-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMath.py
84 lines (63 loc) · 2.04 KB
/
Math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
from collections import Sequence
import math
class Tangent_Type:
def __init__(self, v, t=0.0):
self.v = v
self.t = t
def Tangentify(input_func):
def func(self, x):
if not isinstance(x, Tangent_Type):
x = Tangent_Type(x)
return input_func(self, x)
return func
@Tangentify
def __add__(self, x):
return Tangent_Type(self.v + x.v, self.t + x.t)
__radd__ = __add__
@Tangentify
def __sub__(self, x):
return Tangent_Type(self.v - x.v, self.t - x.t)
@Tangentify
def __rsub__(self, x):
return Tangent_Type(x.v - self.v, x.t - self.t)
@Tangentify
def __mul__(self, x):
return Tangent_Type(self.v*x.v, self.v*x.t + self.t*x.v)
__rmul__ = __mul__
@Tangentify
def __truediv__(self, x):
return Tangent_Type(self.v/x.v , self.t/x.v-(self.v*x.t)/(x.v*x.v))
@Tangentify
def __rtruediv__(self, x):
return Tangent_Type(x.v/self.v , x.t/self.v-(x.v*self.t)/(self.v*self.v))
@Tangentify
def __pow__(self, x):
return Tangent_Type(self.v**x.v, self.t*x.v*self.v**(x.v-1) + math.log(self.v)*self.v**x.v*x.t)
def Tangentify(input_func):
def func(x):
if not isinstance(x, Tangent_Type):
x = Tangent_Type(x)
return input_func(x)
return func
@Tangentify
def cos(x):
return Tangent_Type(math.cos(x.v), -x.t*(math.sin(x.v)))
@Tangentify
def sin(x):
return Tangent_Type(math.sin(x.v), x.t*(math.cos(x.v)))
@Tangentify
def tan(x):
return Tangent_Type(math.tan(x.v), x.t*(1+math.tan(x.v)**2)**2)
@Tangentify
def exp(x):
return Tangent_Type(math.exp(x.v), x.t*math.exp(x.v))
@Tangentify
def log(x):
return Tangent_Type(math.log(x.v), x.t/x.v)
def pow(x, y):
if not isinstance(x, Tangent_Type):
x = Tangent_Type(x)
if not isinstance(y, Tangent_Type):
y = Tangent_Type(y)
return Tangent_Type(math.pow(x.v, y.v), x.t*y.v*x.v**(y.v-1) + math.log(x.v)*y.t*x.v**y.v)