forked from python4geeks/Hactoberfest2021
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fuggi's Contribution
98 lines (90 loc) · 2.7 KB
/
Fuggi's Contribution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
##Race Car
package breadth_first_search;
import java.util.*;
/**
infinite number line. (Your car can go into negative positions.)
*
* <p>Your car drives automatically according to a sequence of instructions A (accelerate) and R
* (reverse).
*
* <p>When you get an instruction "A", your car does the following: position += speed, speed *= 2.
*
* <p>When you get an instruction "R", your car does the following: if your speed is positive then
* speed = -1 , otherwise speed = 1. (Your position stays the same.)
*
* <p>For example, after commands "AAR", your car goes to positions 0->1->3->3, and your speed goes
* to 1->2->4->-1.
*
* <p>Now for some target position, say the length of the shortest sequence of instructions to get
* there.
*
* <p>Example 1: Input: target = 3 Output: 2 Explanation: The shortest instruction sequence is "AA".
* Your position goes from 0->1->3. Example 2: Input: target = 6 Output: 5 Explanation: The shortest
* instruction sequence is "AAARA". Your position goes from 0->1->3->7->7->6.
*
* <p>Note:
*
* <p>1 <= target <= 10000.
*
* <p>Solution: O(n log n) Do a BFS and visit every possible state. Prune the search space by
* avoiding negative vertices and keep a boundary target of approximately (target * 2) - beyond this
* boundary target the race car should not progress in the forward direction.
*/
public class RaceCar {
/**
* Main method
*
* @param args
*/
public static void main(String[] args) {
System.out.println(new RaceCar().racecar(1000));
}
private class Node {
int v, s, d;
Node(int v, int s, int d) {
this.v = v;
this.s = s;
this.d = d;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof Node)) return false;
Node node = (Node) o;
return v == node.v && s == node.s;
}
@Override
public int hashCode() {
return Objects.hash(v, s);
}
}
public int racecar(int target) {
if (target == 0) return 0;
Queue<Node> queue = new ArrayDeque<>();
Set<Node> done = new HashSet<>();
Node start = new Node(0, 1, 0);
done.add(start);
queue.offer(start);
while (!queue.isEmpty()) {
Node curr = queue.poll();
if (curr.v < (target * 2)) {
Node c1 = new Node(curr.v + curr.s, curr.s * 2, curr.d + 1);
if (c1.v >= 0) {
if (!done.contains(c1)) {
queue.offer(c1);
done.add(c1);
if (target == c1.v) {
return c1.d;
}
}
}
}
Node c2 = new Node(curr.v, curr.s < 0 ? 1 : -1, curr.d + 1);
if (!done.contains(c2)) {
done.add(c2);
queue.offer(c2);
}
}
return -1;
}
}