-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshapes.py
688 lines (570 loc) · 23.9 KB
/
shapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
# Generic imports
import os
import os.path
import PIL
import math
import shapely
import scipy.special
import matplotlib
import pygmsh, meshio
import numpy as np
import matplotlib.pyplot as plt
# Custom imports
from scipy.spatial.distance import cdist
from meshes import *
### ************************************************
### Class defining shape object
class Shape:
### ************************************************
### Constructor
def __init__(self,
name='shape',
control_pts=None,
n_control_pts=None,
n_sampling_pts=None,
radius=None,
edgy=None):
if (name is None): name = 'shape'
if (control_pts is None): control_pts = np.array([])
if (n_control_pts is None): n_control_pts = 0
if (n_sampling_pts is None): n_sampling_pts = 0
if (radius is None): radius = np.array([])
if (edgy is None): edgy = np.array([])
self.name = name
self.control_pts = control_pts
self.n_control_pts = n_control_pts
self.n_sampling_pts = n_sampling_pts
self.curve_pts = np.array([])
self.area = 0.0
self.size_x = 0.0
self.size_y = 0.0
self.index = 0
self.cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
'white_to_black',
[(0, 'white'), (1, 'black')],
)
if (len(radius) == n_control_pts): self.radius = radius
if (len(radius) == 1): self.radius = radius * np.ones([n_control_pts])
if (len(edgy) == n_control_pts): self.edgy = edgy
if (len(edgy) == 1): self.edgy = edgy * np.ones([n_control_pts])
subname = name.split('_')
if (len(subname) == 2): # name is of the form shape_?.xxx
self.name = subname[0]
index = subname[1].split('.')[0]
self.index = int(index)
if (len(subname) > 2): # name contains several '_'
print('Please do not use several "_" char in shape name')
quit()
if (len(control_pts) > 0):
self.control_pts = control_pts
self.n_control_pts = len(control_pts)
### ************************************************
### Reset object
def reset(self):
self.name = 'shape'
self.control_pts = np.array([])
self.n_control_pts = 0
self.n_sampling_pts = 0
self.radius = np.array([])
self.edgy = np.array([])
self.curve_pts = np.array([])
self.area = 0.0
### ************************************************
### Generate shape
def generate(self, *args, **kwargs):
# Handle optional argument
centering = kwargs.get('centering', True)
cylinder = kwargs.get('cylinder', False)
magnify = kwargs.get('magnify', 1.0)
ccws = kwargs.get('ccws', True)
# Generate random control points if empty
if (len(self.control_pts) == 0):
if (cylinder):
self.control_pts = generate_cylinder_pts(self.n_control_pts)
else:
self.control_pts = generate_random_pts(self.n_control_pts)
# Magnify
self.control_pts *= magnify
# Center set of points
center = np.mean(self.control_pts, axis=0)
if (centering):
self.control_pts -= center
# Sort points counter-clockwise
if (ccws):
control_pts, radius, edgy = ccw_sort(self.control_pts,
self.radius,
self.edgy)
else:
control_pts = np.array(self.control_pts)
radius = np.array(self.radius)
edgy = np.array(self.edgy)
local_curves = []
delta = np.zeros([self.n_control_pts, 2])
radii = np.zeros([self.n_control_pts, 2])
delta_b = np.zeros([self.n_control_pts, 2])
# Compute all informations to generate curves
for i in range(self.n_control_pts):
# Collect points
prv = (i - 1)
crt = i
nxt = (i + 1) % self.n_control_pts
pt_m = control_pts[prv, :]
pt_c = control_pts[crt, :]
pt_p = control_pts[nxt, :]
# Compute delta vector
diff = pt_p - pt_m
delta[crt, :] = diff / np.linalg.norm(diff)
# Compute edgy vector
delta_b[crt, :] = 0.5 * (pt_m + pt_p) - pt_c
# Compute radii
dist = compute_distance(pt_m, pt_c)
radii[crt, 0] = 0.5 * dist * radius[crt]
dist = compute_distance(pt_c, pt_p)
radii[crt, 1] = 0.5 * dist * radius[crt]
# Generate curves
for i in range(self.n_control_pts):
crt = i
nxt = (i + 1) % self.n_control_pts
pt_c = control_pts[crt, :]
pt_p = control_pts[nxt, :]
dist = compute_distance(pt_c, pt_p)
smpl = math.ceil(self.n_sampling_pts * math.sqrt(dist))
local_curve = generate_bezier_curve(pt_c, pt_p,
delta[crt, :], delta[nxt, :],
delta_b[crt, :], delta_b[nxt, :],
radii[crt, 1], radii[nxt, 0],
edgy[crt], edgy[nxt],
smpl)
local_curves.append(local_curve)
curve = np.concatenate([c for c in local_curves])
x, y = curve.T
z = np.zeros(x.size)
self.curve_pts = np.column_stack((x, y, z))
self.curve_pts = remove_duplicate_pts(self.curve_pts)
# Center set of points
if (centering):
center = np.mean(self.curve_pts, axis=0)
self.curve_pts -= center
self.control_pts[:, 0:2] -= center[0:2]
# Compute area
self.compute_area()
# Compute dimensions
self.compute_dimensions()
#### Rinat's changes! ####
# check if point is inside the shape
# cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
# 'white_to_black',
# [(0, 'white'), (1, 'black')],
# )
def point_to_color(self, point_to_examine, shape, cmap, segments_arr):
distance = self.min_dist_point_to_shape(point_to_examine, shape, segments_arr)
# Normalize the distance to a range of 0-1
norm = matplotlib.colors.Normalize(vmin=0, vmax=5)
# Get the color corresponding to the distance
color = cmap(norm(distance))
return matplotlib.colors.to_hex(color, keep_alpha=True)
def min_dist_point_to_shape(self, point_to_examine, shape, segments_arr):
if shape.contains_point(point_to_examine):
return 0.0
else:
# distance = np.empty(self.curve_pts[:, [0, 1]].shape, dtype=np.float64)
min_dist = np.inf
# for ((x, y), code) in shape.iter_segments(simplify=False, curves=True):
for ((x, y), code) in segments_arr:
# try to make a matrix of the (x,y) in all the iterations,
# then after the for loop do the temp_dist calculation (matrix peulot)
temp_dist = np.sqrt((y - point_to_examine[1]) ** 2 +
(x - point_to_examine[0]) ** 2)
min_dist = min(min_dist, temp_dist)
return min_dist
### ************************************************
### Write image
def generate_image(self, *args, **kwargs):
# Handle optional argument
plot_pts = kwargs.get('plot_pts', False)
override_name = kwargs.get('override_name', '')
show_quadrants = kwargs.get('show_quadrants', False)
max_radius = kwargs.get('max_radius', 1.0)
min_radius = kwargs.get('min_radius', 0.2)
xmin = kwargs.get('xmin', -100.0)
xmax = kwargs.get('xmax', 100.0)
ymin = kwargs.get('ymin', -100.0)
ymax = kwargs.get('ymax', 100.0)
# Plot shape
plt.xlim([xmin, xmax])
plt.ylim([ymin, ymax])
plt.axis('off')
plt.gca().set_aspect('equal', adjustable='box')
plt.fill([xmin, xmax, xmax, xmin],
[ymin, ymin, ymax, ymax],
color=(0.784, 0.773, 0.741),
linewidth=2.5,
zorder=0)
plt.fill(self.curve_pts[:, 0],
self.curve_pts[:, 1],
'black',
linewidth=0,
zorder=1)
# Plot points
# Each point gets a different color
if (plot_pts):
colors = matplotlib.cm.ocean(np.linspace(0, 1, self.n_control_pts))
plt.scatter(self.control_pts[:, 0],
self.control_pts[:, 1],
color=colors,
s=50,
zorder=2,
alpha=1.0)
# Rinat's changes
shape = matplotlib.path.Path(self.curve_pts[:, [0, 1]])
num_points_to_base_on = 100
segments_arr = shape.iter_segments(simplify=False, curves=True)
point_to_examine = np.array([0, 0.5])
new_color = self.point_to_color(point_to_examine, shape, self.cmap, segments_arr)
plt.scatter(point_to_examine[0], point_to_examine[1], color=new_color,
s=50, zorder=2, alpha=1.0)
point_to_examine = np.array([0, 1])
# shape = matplotlib.path.Path(self.curve_pts[:, [0, 1]])
new_color = self.point_to_color(point_to_examine, shape, self.cmap, segments_arr)
plt.scatter(point_to_examine[0], point_to_examine[1], color=new_color,
s=50, zorder=2, alpha=1.0)
point_to_examine = np.array([1.5, 0])
# shape = matplotlib.path.Path(self.curve_pts[:, [0, 1]])
new_color = self.point_to_color(point_to_examine, shape, self.cmap, segments_arr)
plt.scatter(point_to_examine[0], point_to_examine[1], color=new_color,
s=50, zorder=2, alpha=1.0)
point_to_examine1 = np.array([0, 2])
# shape = matplotlib.path.Path(self.curve_pts[:, [0, 1]])
new_color1 = self.point_to_color(point_to_examine1, shape, self.cmap, segments_arr)
plt.scatter(point_to_examine1[0], point_to_examine1[1], color=new_color1,
s=50, zorder=2, alpha=1.0)
# end Rinat's changes
# Plot quadrants
if (show_quadrants):
for pt in range(self.n_control_pts):
dangle = (360.0 / float(self.n_control_pts))
angle = dangle * float(pt) + dangle / 2.0
x_max = max_radius * math.cos(math.radians(angle))
y_max = max_radius * math.sin(math.radians(angle))
x_min = min_radius * math.cos(math.radians(angle))
y_min = min_radius * math.sin(math.radians(angle))
plt.plot([x_min, x_max],
[y_min, y_max],
color='w',
linewidth=1)
circle = plt.Circle((0, 0), max_radius, fill=False, color='w')
plt.gcf().gca().add_artist(circle)
circle = plt.Circle((0, 0), min_radius, fill=False, color='w')
plt.gcf().gca().add_artist(circle)
# Save image
filename = self.name + '_' + str(self.index) + '.png'
if (override_name != ''): filename = override_name
plt.gcf().tight_layout()
plt.savefig(filename,
dpi=400,
bbox_inches='tight')
plt.close(plt.gcf())
plt.cla()
trim_white(filename)
### ************************************************
### Write csv
def write_csv(self):
with open(self.name + '_' + str(self.index) + '.csv', 'w') as file:
# Write header
file.write('{} {}\n'.format(self.n_control_pts,
self.n_sampling_pts))
# Write control points coordinates
for i in range(0, self.n_control_pts):
file.write('{} {} {} {}\n'.format(self.control_pts[i, 0],
self.control_pts[i, 1],
self.radius[i],
self.edgy[i]))
### ************************************************
### Read csv and initialize shape with it
def read_csv(self, filename, *args, **kwargs):
# Handle optional argument
keep_numbering = kwargs.get('keep_numbering', False)
if (not os.path.isfile(filename)):
print('I could not find csv file: ' + filename)
print('Exiting now')
exit()
self.reset()
sfile = filename.split('.')
sfile = sfile[-2]
sfile = sfile.split('/')
name = sfile[-1]
if (keep_numbering):
sname = name.split('_')
name = sname[0]
name = name + '_' + str(self.index)
x = []
y = []
radius = []
edgy = []
with open(filename) as file:
header = file.readline().split()
n_control_pts = int(header[0])
n_sampling_pts = int(header[1])
for i in range(0, n_control_pts):
coords = file.readline().split()
x.append(float(coords[0]))
y.append(float(coords[1]))
radius.append(float(coords[2]))
edgy.append(float(coords[3]))
control_pts = np.column_stack((x, y))
self.__init__(name,
control_pts,
n_control_pts,
n_sampling_pts,
radius,
edgy)
### ************************************************
### Mesh shape
def mesh(self, *args, **kwargs):
# Handle optional argument
mesh_domain = kwargs.get('mesh_domain', False)
xmin = kwargs.get('xmin', -1.0)
xmax = kwargs.get('xmax', 1.0)
ymin = kwargs.get('ymin', -1.0)
ymax = kwargs.get('ymax', 1.0)
domain_h = kwargs.get('domain_h', 1.0)
mesh_format = kwargs.get('mesh_format', 'mesh')
# Convert curve to polygon
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon(self.curve_pts,
make_surface=not mesh_domain)
# Mesh domain if necessary
if (mesh_domain):
# Compute an intermediate mesh size
border = geom.add_rectangle(xmin, xmax,
ymin, ymax,
0.0,
domain_h,
holes=[poly.curve_loop])
# Generate mesh and write in medit format
try:
mesh = geom.generate_mesh(dim=2)
except AssertionError:
print('\n' + '!!!!! Meshing failed !!!!!')
return False, 0
# Compute data from mesh
n_tri = len(mesh.cells_dict['triangle'])
# Remove vertex keywork from cells dictionnary
# to avoid warning message from meshio
del mesh.cells_dict['vertex']
# Remove lines if output format is xml
if (mesh_format == 'xml'): del mesh.cells['line']
# Write mesh
filename = self.name + '_' + str(self.index) + '.' + mesh_format
meshio.write_points_cells(filename, mesh.points, mesh.cells)
return True, n_tri
### ************************************************
### Get shape bounding box
def compute_bounding_box(self):
x_max, y_max = np.amax(self.control_pts, axis=0)
x_min, y_min = np.amin(self.control_pts, axis=0)
dx = x_max - x_min
dy = y_max - y_min
return dx, dy
### ************************************************
### Modify shape given a deformation field
def modify_shape_from_field(self, deformation, *args, **kwargs):
# Handle optional argument
replace = kwargs.get('replace', False)
pts_list = kwargs.get('pts_list', [])
# Check inputs
if (pts_list == []):
if (len(deformation[:, 0]) != self.n_control_pts):
print('Input deformation field does not have right length')
quit()
if (len(deformation[0, :]) not in [2, 3]):
print('Input deformation field does not have right width')
quit()
if (pts_list != []):
if (len(pts_list) != len(deformation)):
print('Lengths of pts_list and deformation are different')
quit()
# If shape is to be replaced entirely
if (replace):
# If a list of points is provided
if (pts_list != []):
for i in range(len(pts_list)):
self.control_pts[pts_list[i], 0] = deformation[i, 0]
self.control_pts[pts_list[i], 1] = deformation[i, 1]
self.edgy[pts_list[i]] = deformation[i, 2]
# Otherwise
if (pts_list == []):
self.control_pts[:, 0] = deformation[:, 0]
self.control_pts[:, 1] = deformation[:, 1]
self.edgy[:] = deformation[:, 2]
# Otherwise
if (not replace):
# If a list of points to deform is provided
if (pts_list != []):
for i in range(len(pts_list)):
self.control_pts[pts_list[i], 0] += deformation[i, 0]
self.control_pts[pts_list[i], 1] += deformation[i, 1]
self.edgy[pts_list[i]] += deformation[i, 2]
# Otherwise
if (pts_list == []):
self.control_pts[:, 0] += deformation[:, 0]
self.control_pts[:, 1] += deformation[:, 1]
self.edgy[:] += deformation[:, 2]
# Increment shape index
self.index += 1
### ************************************************
### Compute shape area
def compute_area(self):
self.area = 0.0
# Use Green theorem to compute area
for i in range(0, len(self.curve_pts) - 1):
x1 = self.curve_pts[i - 1, 0]
x2 = self.curve_pts[i, 0]
y1 = self.curve_pts[i - 1, 1]
y2 = self.curve_pts[i, 1]
self.area += 2.0 * (y1 + y2) * (x2 - x1)
### ************************************************
### Compute shape dimensions
def compute_dimensions(self):
self.size_y = 0.0
self.size_x = 0.0
xmin = 1.0e20
xmax = -1.0e20
ymin = 1.0e20
ymax = -1.0e20
for i in range(len(self.curve_pts)):
xmin = min(xmin, self.curve_pts[i, 0])
xmax = max(xmax, self.curve_pts[i, 0])
ymin = min(ymin, self.curve_pts[i, 1])
ymax = max(ymax, self.curve_pts[i, 1])
self.size_x = xmax - xmin
self.size_y = ymax - ymin
### End of class Shape
### ************************************************
### ************************************************
### Compute distance between two points
def compute_distance(p1, p2):
return np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
### ************************************************
### Generate n_pts random points in the unit square
def generate_random_pts(n_pts):
return np.random.rand(n_pts, 2)
### ************************************************
### Generate cylinder points
def generate_cylinder_pts(n_pts):
if (n_pts < 4):
print('Not enough points to generate cylinder')
exit()
pts = np.zeros([n_pts, 2])
ang = 2.0 * math.pi / n_pts
for i in range(0, n_pts):
pts[i, :] = [math.cos(float(i) * ang), math.sin(float(i) * ang)]
return pts
### ************************************************
### Compute minimal distance between successive pts in array
def compute_min_distance(pts):
dist_min = 1.0e20
for i in range(len(pts) - 1):
p1 = pts[i, :]
p2 = pts[i + 1, :]
dist = compute_distance(p1, p2)
dist_min = min(dist_min, dist)
return dist_min
### ************************************************
### Remove duplicate points in input coordinates array
### WARNING : this routine is highly sub-optimal
def remove_duplicate_pts(pts):
to_remove = []
for i in range(len(pts)):
for j in range(len(pts)):
# Check that i and j are not identical
if (i == j):
continue
# Check that i and j are not removed points
if (i in to_remove) or (j in to_remove):
continue
# Compute distance between points
pi = pts[i, :]
pj = pts[j, :]
dist = compute_distance(pi, pj)
# Tag the point to be removed
if (dist < 1.0e-8):
to_remove.append(j)
# Sort elements to remove in reverse order
to_remove.sort(reverse=True)
# Remove elements from pts
for pt in to_remove:
pts = np.delete(pts, pt, 0)
return pts
### ************************************************
### Counter Clock-Wise sort
### - Take a cloud of points and compute its geometric center
### - Translate points to have their geometric center at origin
### - Compute the angle from origin for each point
### - Sort angles by ascending order
def ccw_sort(pts, rad, edg):
geometric_center = np.mean(pts, axis=0)
translated_pts = pts - geometric_center
angles = np.arctan2(translated_pts[:, 1], translated_pts[:, 0])
x = angles.argsort()
pts2 = np.array(pts)
rad2 = np.array(rad)
edg2 = np.array(edg)
return pts2[x, :], rad2[x], edg2[x]
### ************************************************
### Compute Bernstein polynomial value
def compute_bernstein(n, k, t):
k_choose_n = scipy.special.binom(n, k)
return k_choose_n * (t ** k) * ((1.0 - t) ** (n - k))
### ************************************************
### Sample Bezier curves given set of control points
### and the number of sampling points
### Bezier curves are parameterized with t in [0,1]
### and are defined with n control points P_i :
### B(t) = sum_{i=0,n} B_i^n(t) * P_i
def sample_bezier_curve(control_pts, n_sampling_pts):
n_control_pts = len(control_pts)
t = np.linspace(0, 1, n_sampling_pts)
curve = np.zeros((n_sampling_pts, 2))
for i in range(n_control_pts):
curve += np.outer(compute_bernstein(n_control_pts - 1, i, t),
control_pts[i])
return curve
### ************************************************
### Generate Bezier curve between two pts
def generate_bezier_curve(p1, p2,
delta1, delta2,
delta_b1, delta_b2,
radius1, radius2,
edgy1, edgy2,
n_sampling_pts):
# Sample the curve if necessary
if (n_sampling_pts != 0):
# Create array of control pts for cubic Bezier curve
# First and last points are given, while the two intermediate
# points are computed from edge points, angles and radius
control_pts = np.zeros((4, 2))
control_pts[0, :] = p1[:]
control_pts[3, :] = p2[:]
# Compute baseline intermediate control pts ctrl_p1 and ctrl_p2
ctrl_p1_base = radius1 * delta1
ctrl_p2_base = -radius2 * delta2
ctrl_p1_edgy = delta_b1
ctrl_p2_edgy = delta_b2
control_pts[1, :] = p1 + ctrl_p1_base + edgy1 * ctrl_p1_edgy
control_pts[2, :] = p2 + ctrl_p2_base + edgy2 * ctrl_p2_edgy
# Compute points on the Bezier curve
curve = sample_bezier_curve(control_pts, n_sampling_pts)
# Else return just a straight line
else:
curve = p1
curve = np.vstack([curve, p2])
return curve
### Crop white background from image
def trim_white(filename):
im = PIL.Image.open(filename)
bg = PIL.Image.new(im.mode, im.size, (255, 255, 255))
diff = PIL.ImageChops.difference(im, bg)
bbox = diff.getbbox()
cp = im.crop(bbox)
cp.save(filename)