forked from mrthlinh/Spotify-Playlist-Recommender
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWord2Vec_playlist.py
274 lines (205 loc) · 7.93 KB
/
Word2Vec_playlist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 27 22:04:01 2018
@author: bking
"""
from pyspark import SparkContext,StorageLevel
import pandas as pd
from pyspark.mllib.feature import Word2Vec,Word2VecModel
from helper import findK_relevant
import time
from helper import my_evaluation
import argparse
import sys
import pickle
import os.path
import glob
from multiprocessing import Pool
# How to write spark-submit
#https://www.alibabacloud.com/help/doc-detail/28124.htm
#https://spark.apache.org/docs/latest/configuration.html
# --conf spark.driver.maxResultSize=3g
# result
#{'r-precision': 0.0030150149552267557, 'ndcg': 0.004065222638120043, 'song clicks': 10.357300000000002}
# Initialize df_ps_train
#df_ps_train = pd.DataFrame()
#def my_function(data):
# pid = data[0]
# current_list = data[1]
#
#
# start = time.time()
# print("Pid: ",pid)
#
#
## topK_pid = findKRelevant_simple(pid,df_ps_train,K)
# syms = model.findSynonyms(str(pid),K)
#
# topK_pid = [s[0] for s in syms]
# n = 0
#
# # Need to convert str to Int here
# topK_pid = [int(i) for i in topK_pid]
#
# while(1):
# # Get the top 1 pid
# top_pid = topK_pid[n]
#
# # Retrieve tid from the top 1 pid
# add_tid_list = df_ps_train.loc[top_pid].tid
#
# # Form new list
# new_tid_list = current_list + add_tid_list
#
# # Check duplicate lists
# new_tid_list = [tid for tid in new_tid_list if tid not in current_list]
#
# # Check number of songs and Add to data for prediction
# total_song = len(new_tid_list)
#
## print("n: {}\t total_song: {}".format(n,total_song))
#
#
# if (total_song > MAX_tid):
# current_list = new_tid_list[:MAX_tid]
# break
# else:
# current_list = new_tid_list
#
# n += 1
# if (n>=K):
# break
#
## SIZE = SIZE - 1
# print("Time taken = {0:.5f}".format(time.time() - start))
#
# return current_list
# return [pid,current_list]
def main(argv):
sc = SparkContext("local", "Simple App")
sc.setLogLevel("ERROR")
args = parser.parse_args(argv[1:])
vector_size = int(args.vector_size)
min_count = int(args.min_count)
test = int(args.mode)
resume = int(args.resume)
# proc = int(args.proc)
MAX_LEN = 500
K=10
# vector_size = 5
# min_count = 5
# Check the existence of word2vec_model folder
model_name = "word2vec_model_playlist"
model_folder = glob.glob(model_name+"*")
model_num = len(model_folder)
path = "data/df_data/df_playlistSong/"
if test == 1:
print("Mode test: ON")
path = "data/df_data/df_small/df_playlistSong/"
MAX_LEN = 100
print(path)
print("Load Song-Playlist matrix")
# path = "data/df_data/df_small/df_playlistSong/"
df_ps_train = pd.read_hdf(path+'df_ps_train.hdf')
df_ps_test = pd.read_hdf(path+'df_ps_test.hdf')
df_ps_test_truth = pd.read_hdf(path+'df_ps_test_truth.hdf')
df_sp_train = pd.read_hdf(path+'df_sp_train.hdf')
data_str = [list(map(str,item)) for item in df_sp_train.pid.values]
pid_list_pred = list(df_ps_test.index)
current_list = list(df_ps_test.loc[pid_list_pred].tid)
current_len = [len(i) for i in current_list]
# K_list = [MAX_LEN - current_len[i] for i in range(len(current_len))]
current_list_str = [list(map(str,item)) for item in current_list]
record = []
index = 0
# Resume or not
if resume == 0:
print("Serialize data")
doc = sc.parallelize(data_str).persist(StorageLevel.DISK_ONLY)
print("Train Word2Vec model")
model = Word2Vec().setVectorSize(vector_size).setSeed(3).setMinCount(min_count).fit(doc)
print("Get vocabulary")
vocab = model.getVectors().keySet()
print("Save model")
model_name = model_name + str(model_num)
model.save(sc, model_name)
elif resume == 1:
print("load recent model")
model_name = model_name + str(model_num-1)
model = Word2VecModel.load(sc, model_name)
print("Get vocabulary")
vocab = model.getVectors().keySet()
first_key = list(vocab)[0]
vector_size = len(model.getVectors()[first_key])
print("Check resume file: ",end='')
if(os.path.exists("resumefile")):
print("Exist")
with open ('resumefile', 'rb') as fp:
resumefile = pickle.load(fp)
pid,record = resumefile.get('pid'), resumefile.get('data')
index = current_list_str.index(pid)
print("Resume at point pid: {} \t index: {}".format(pid,index))
else:
print("Not exist")
print("Find K Relevant Songs")
try:
i = 0
for data_list in current_list_str[index:]:
pid = pid_list_pred[i]
print("Iter: {} \t pid: {} ".format(str(i+1),pid))
start = time.time()
######################## START CHANGING HERE ################################
syms = model.findSynonyms(str(pid),K)
topK_pid = [s[0] for s in syms]
# Need to convert str to Int here
topK_pid = [int(i) for i in topK_pid]
n = 0
while(1):
# Get the top 1 pid
top_pid = topK_pid[n]
# Retrieve tid from the top 1 pid
add_tid_list = df_ps_train.loc[top_pid].tid
# Form new list
new_tid_list = data_list + add_tid_list
# Check duplicate lists
new_tid_list = [tid for tid in new_tid_list if tid not in data_list]
# Check number of songs and Add to data for prediction
total_song = len(new_tid_list)
if (total_song > MAX_LEN):
new_list = new_tid_list[:MAX_LEN]
break
else:
new_list = new_tid_list
n += 1
if (n>=K):
break
record.append(new_list)
i += 1
print("Time taken = {0:.5f}".format(time.time() - start))
print("Create new dataframe")
df_ps_test['new_tid'] = record
df_ps_test['tid']=df_ps_test.apply(lambda x: x[1]+ x[2],axis=1)
df_ps_test=df_ps_test.drop(columns='new_tid')
# df_ps_pred = pd.DataFrame.from_records(new_list,columns=['pid','tid'])
# df_ps_pred = df_ps_pred.set_index('pid')
print("Save test data")
df_ps_test.to_hdf(path+'df_ps_test_complete.hdf', key='abc')
print("Evaluation")
result = my_evaluation(df_ps_test,df_ps_test_truth)
print(result.aggregate_metric())
except Exception as e:
print(e)
print("Create a resume point")
resume_dict = {'pid':pid,'data':record}
with open('resumefile', 'wb') as fp:
pickle.dump(resume_dict, fp)
if __name__ =="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--vector_size', default='100', type=str, help='Vector Size in Word2Vec')
parser.add_argument('--min_count', default= '5', type=str, help='Minimum frequency')
parser.add_argument('--mode', default= '0', type=str, help='Mode Test On/Off')
parser.add_argument('--resume', default= '0', type=str, help='Load model and resume')
# parser.add_argument('--proc', default= '8', type=str, help='Number of processor')
main(sys.argv)
# print(result)