forked from PointCloudLibrary/pcl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_recognition_ism.cpp
150 lines (133 loc) · 6 KB
/
test_recognition_ism.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: $
*
*/
#include <gtest/gtest.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/search/search.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/feature.h>
#include <pcl/features/fpfh.h>
#include <pcl/features/impl/fpfh.hpp>
#include <pcl/recognition/implicit_shape_model.h>
#include <pcl/recognition/impl/implicit_shape_model.hpp>
pcl::PointCloud<pcl::PointXYZ>::Ptr training_cloud;
pcl::PointCloud<pcl::PointXYZ>::Ptr testing_cloud;
pcl::PointCloud<pcl::Normal>::Ptr training_normals;
pcl::PointCloud<pcl::Normal>::Ptr testing_normals;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (ISM, TrainRecognize)
{
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> clouds;
std::vector<pcl::PointCloud<pcl::Normal>::Ptr > normals;
std::vector<unsigned int> classes;
clouds.push_back (training_cloud);
normals.push_back (training_normals);
classes.push_back (0);
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<153> >::Ptr fpfh
(new pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<153> >);
fpfh->setRadiusSearch (30.0);
pcl::Feature< pcl::PointXYZ, pcl::Histogram<153> >::Ptr feature_estimator(fpfh);
pcl::ism::ImplicitShapeModelEstimation<153, pcl::PointXYZ, pcl::Normal>::ISMModelPtr model = boost::shared_ptr<pcl::features::ISMModel> (new pcl::features::ISMModel);
pcl::ism::ImplicitShapeModelEstimation<153, pcl::PointXYZ, pcl::Normal> ism;
ism.setFeatureEstimator(feature_estimator);
ism.setTrainingClouds (clouds);
ism.setTrainingClasses (classes);
ism.setTrainingNormals (normals);
ism.setSamplingSize (2.0f);
ism.trainISM (model);
int _class = 0;
double radius = model->sigmas_[_class] * 10.0;
double sigma = model->sigmas_[_class];
boost::shared_ptr<pcl::features::ISMVoteList<pcl::PointXYZ> > vote_list = ism.findObjects (model, testing_cloud, testing_normals, _class);
EXPECT_NE (vote_list->getNumberOfVotes (), 0);
std::vector<pcl::ISMPeak, Eigen::aligned_allocator<pcl::ISMPeak> > strongest_peaks;
vote_list->findStrongestPeaks (strongest_peaks, _class, radius, sigma);
EXPECT_NE (strongest_peaks.size (), 0);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (ISM, TrainWithWrongParameters)
{
pcl::ism::ImplicitShapeModelEstimation<153, pcl::PointXYZ, pcl::Normal> ism;
float prev_sampling_size = ism.getSamplingSize ();
EXPECT_NE (prev_sampling_size, 0.0);
ism.setSamplingSize (0.0f);
float curr_sampling_size = ism.getSamplingSize ();
EXPECT_EQ (curr_sampling_size, prev_sampling_size);
unsigned int prev_number_of_clusters = ism.getNumberOfClusters ();
EXPECT_NE (prev_number_of_clusters, 0);
ism.setNumberOfClusters (0);
unsigned int curr_number_of_clusters = ism.getNumberOfClusters ();
EXPECT_EQ (curr_number_of_clusters, prev_number_of_clusters);
}
/* ---[ */
int
main (int argc, char** argv)
{
if (argc < 2)
{
std::cerr << "This test requires two point clouds (one for training and one for testing)." << std::endl;
std::cerr << "You can use these two clouds 'ism_train.pcd' and 'ism_test.pcd'." << std::endl;
return (-1);
}
training_cloud = (new pcl::PointCloud<pcl::PointXYZ>)->makeShared();
if (pcl::io::loadPCDFile (argv[1], *training_cloud) < 0)
{
std::cerr << "Failed to read test file. Please download `ism_train.pcd` and pass its path to the test." << std::endl;
return (-1);
}
testing_cloud = (new pcl::PointCloud<pcl::PointXYZ>)->makeShared();
if (pcl::io::loadPCDFile (argv[2], *testing_cloud) < 0)
{
std::cerr << "Failed to read test file. Please download `ism_test.pcd` and pass its path to the test." << std::endl;
return (-1);
}
training_normals = (new pcl::PointCloud<pcl::Normal>)->makeShared();
testing_normals = (new pcl::PointCloud<pcl::Normal>)->makeShared();
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;
normal_estimator.setRadiusSearch (25.0);
normal_estimator.setInputCloud(training_cloud);
normal_estimator.compute(*training_normals);
normal_estimator.setInputCloud(testing_cloud);
normal_estimator.compute(*testing_normals);
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
/* ]--- */