forked from PointCloudLibrary/pcl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_recognition_cg.cpp
239 lines (207 loc) · 8.49 KB
/
test_recognition_cg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: $
*
*/
#include <gtest/gtest.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_cloud.h>
#include <pcl/common/transforms.h>
#include <pcl/correspondence.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/features/shot_omp.h>
#include <pcl/features/board.h>
#include <pcl/keypoints/uniform_sampling.h>
#include <pcl/recognition/cg/hough_3d.h>
#include <pcl/recognition/cg/geometric_consistency.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/kdtree/impl/kdtree_flann.hpp>
#include <pcl/common/eigen.h>
using namespace std;
using namespace pcl;
using namespace pcl::io;
typedef PointXYZ PointType;
typedef Normal NormalType;
typedef ReferenceFrame RFType;
typedef SHOT352 DescriptorType;
PointCloud<PointType>::Ptr model_ (new PointCloud<PointType> ());
PointCloud<PointType>::Ptr model_downsampled_ (new PointCloud<PointType> ());
PointCloud<PointType>::Ptr scene_ (new PointCloud<PointType> ());
PointCloud<PointType>::Ptr scene_downsampled_ (new PointCloud<PointType> ());
PointCloud<NormalType>::Ptr model_normals_ (new PointCloud<NormalType> ());
PointCloud<NormalType>::Ptr scene_normals_ (new PointCloud<NormalType> ());
PointCloud<DescriptorType>::Ptr model_descriptors_ (new PointCloud<DescriptorType> ());
PointCloud<DescriptorType>::Ptr scene_descriptors_ (new PointCloud<DescriptorType> ());
CorrespondencesPtr model_scene_corrs_ (new Correspondences ());
double
computeRmsE (const PointCloud<PointType>::ConstPtr &model, const PointCloud<PointType>::ConstPtr &scene, const Eigen::Matrix4f &rototranslation)
{
PointCloud<PointType> transformed_model;
transformPointCloud (*model, transformed_model, rototranslation);
KdTreeFLANN<PointType> tree;
tree.setInputCloud (scene);
double sqr_norm_sum = 0;
int found_points = 0;
vector<int> neigh_indices (1);
vector<float> neigh_sqr_dists (1);
for (size_t i = 0; i < transformed_model.size (); ++i)
{
int found_neighs = tree.nearestKSearch (transformed_model.at (i), 1, neigh_indices, neigh_sqr_dists);
if(found_neighs == 1)
{
++found_points;
sqr_norm_sum += static_cast<double> (neigh_sqr_dists[0]);
}
}
if (found_points > 0)
return sqrt (sqr_norm_sum / double (transformed_model.size ()));
return numeric_limits<double>::max ();
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, Hough3DGrouping)
{
PointCloud<RFType>::Ptr model_rf (new PointCloud<RFType> ());
PointCloud<RFType>::Ptr scene_rf (new PointCloud<RFType> ());
//RFs
BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
rf_est.setRadiusSearch (0.015);
rf_est.setInputCloud (model_downsampled_);
rf_est.setInputNormals (model_normals_);
rf_est.setSearchSurface (model_);
rf_est.compute (*model_rf);
rf_est.setInputCloud (scene_downsampled_);
rf_est.setInputNormals (scene_normals_);
rf_est.setSearchSurface (scene_);
rf_est.compute (*scene_rf);
vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
//Actual CG
Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
clusterer.setInputCloud (model_downsampled_);
clusterer.setInputRf (model_rf);
clusterer.setSceneCloud (scene_downsampled_);
clusterer.setSceneRf (scene_rf);
clusterer.setModelSceneCorrespondences (model_scene_corrs_);
clusterer.setHoughBinSize (0.03);
clusterer.setHoughThreshold (25);
EXPECT_TRUE (clusterer.recognize (rototranslations));
//Assertions
EXPECT_EQ (rototranslations.size (), 1);
EXPECT_LT (computeRmsE (model_, scene_, rototranslations[0]), 1E-4);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, GeometricConsistencyGrouping)
{
vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
GeometricConsistencyGrouping<PointType, PointType> clusterer;
clusterer.setInputCloud (model_downsampled_);
clusterer.setSceneCloud (scene_downsampled_);
clusterer.setModelSceneCorrespondences (model_scene_corrs_);
clusterer.setGCSize (0.015);
clusterer.setGCThreshold (25);
EXPECT_TRUE (clusterer.recognize (rototranslations));
//Assertions
EXPECT_EQ (rototranslations.size (), 1);
EXPECT_LT (computeRmsE (model_, scene_, rototranslations[0]), 1E-4);
}
/* ---[ */
int
main (int argc, char** argv)
{
if (argc < 3)
{
cerr << "No test file given. Please download `milk.pcd` and `milk_cartoon_all_small_clorox.pcd` and pass their paths to the test." << endl;
return (-1);
}
if (loadPCDFile (argv[1], *model_) < 0)
{
cerr << "Failed to read test file. Please download `milk.pcd` and pass its path to the test." << endl;
return (-1);
}
if (loadPCDFile (argv[2], *scene_) < 0)
{
cerr << "Failed to read test file. Please download `milk_cartoon_all_small_clorox.pcd` and pass its path to the test." << endl;
return (-1);
}
//Normals
NormalEstimationOMP<PointType, NormalType> norm_est;
norm_est.setKSearch (10);
norm_est.setInputCloud (model_);
norm_est.compute (*model_normals_);
norm_est.setInputCloud (scene_);
norm_est.compute (*scene_normals_);
//Downsampling
PointCloud<int> sampled_indices;
UniformSampling<PointType> uniform_sampling;
uniform_sampling.setInputCloud (model_);
uniform_sampling.setRadiusSearch (0.005);
uniform_sampling.compute (sampled_indices);
copyPointCloud (*model_, sampled_indices.points, *model_downsampled_);
uniform_sampling.setInputCloud (scene_);
uniform_sampling.setRadiusSearch (0.02);
uniform_sampling.compute (sampled_indices);
copyPointCloud (*scene_, sampled_indices.points, *scene_downsampled_);
//Descriptor
SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;
descr_est.setRadiusSearch (0.015);
descr_est.setInputCloud (model_downsampled_);
descr_est.setInputNormals (model_normals_);
descr_est.setSearchSurface (model_);
descr_est.compute (*model_descriptors_);
descr_est.setInputCloud (scene_downsampled_);
descr_est.setInputNormals (scene_normals_);
descr_est.setSearchSurface (scene_);
descr_est.compute (*scene_descriptors_);
//Correspondences with KdTree
KdTreeFLANN<DescriptorType> match_search;
match_search.setInputCloud (model_descriptors_);
for (size_t i = 0; i < scene_descriptors_->size (); ++i)
{
if ( pcl_isfinite( scene_descriptors_->at (i).descriptor[0] ) )
{
vector<int> neigh_indices (1);
vector<float> neigh_sqr_dists (1);
int found_neighs = match_search.nearestKSearch (scene_descriptors_->at (i), 1, neigh_indices, neigh_sqr_dists);
if(found_neighs == 1 && neigh_sqr_dists[0] < 0.25f)
{
Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
model_scene_corrs_->push_back (corr);
}
}
}
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
/* ]--- */