forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_buffer.cpp
144 lines (133 loc) · 5.48 KB
/
input_buffer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include <torch/csrc/autograd/input_buffer.h>
#include <c10/core/DeviceGuard.h>
#include <c10/core/StreamGuard.h>
#include <c10/core/Event.h>
#include <c10/util/Optional.h>
#include <cstddef>
#include <utility>
#include <vector>
namespace torch { namespace autograd {
static void accumulate(std::vector<Variable>& buffer,
const size_t pos,
Variable&& var) {
TORCH_INTERNAL_ASSERT(pos < buffer.size());
auto& old_var = buffer[pos];
// ATen doesn't route sparse additions correctly...
// do dense + sparse in-place if possible
if (old_var.is_sparse()) {
//storage use_count is a big hammer, but for anything lighter there's an adversarial example with unexpected inplace modification
if (!var.is_sparse() && var.is_contiguous() && var.storage().use_count() == 1) {
buffer[pos] = var.add_(old_var);
} else {
buffer[pos] = var + old_var;
}
} else {
if (var.is_sparse() && !old_var.is_sparse() && old_var.is_contiguous() && old_var.storage().use_count() == 1) {
buffer[pos] = old_var.add_(var);
} else {
buffer[pos] = old_var + var;
}
}
}
void InputBuffer::add(size_t pos,
Variable&& var,
const c10::optional<c10::Stream>& opt_producer_stream,
const c10::optional<c10::Stream>& opt_consumer_stream) {
TORCH_INTERNAL_ASSERT(pos < buffer.size());
if (!var.defined()) {
return;
}
// Switches to accumulate device
// The device (and stream) chosen for accumulation is:
// (1) var is not a CUDA variable. Accumulation happens on var's device.
// (2) var is a CUDA variable and it, the consumer, and the producer share the same device:
// (2a) Uses the consumer's stream as the accumulation stream
// (2b) Syncs the accumulation stream with the producer's stream (if different)
// (2c) Accumulates.
// (3) var is a CUDA variable and it shares a device with the consumer but not the producer:
// (3a) Uses the consumer's stream as the accumulation stream
// (3b) Syncs the accumulation stream with the consumer device's default stream
// (3c) Accumulates.
// (4) var is a CUDA variable and it shares a device with the producer but not the consumer:
// (4a) Uses the producer device's default stream as the accumulation stream
// (4b) Syncs the accumulation stream with the the producer's stream
// (4c) Accumulates.
// (5) var is a CUDA variable and it does not share a device with the consumer or producer.
// Accumulation happens on the var device's default stream.
TORCH_INTERNAL_ASSERT(device_of(var));
c10::optional<c10::Stream> opt_accumulate_stream = c10::nullopt;
if (device_of(var)->is_cuda()) {
const auto on_producer = opt_producer_stream
&& device_of(var) == opt_producer_stream->device();
const auto on_consumer = opt_consumer_stream
&& device_of(var) == opt_consumer_stream->device();
if (on_producer && on_consumer) {
// (2a)
opt_accumulate_stream = opt_consumer_stream;
if (opt_accumulate_stream != opt_producer_stream) {
// (2b)
auto event = c10::Event{c10::DeviceType::CUDA};
event.record(*opt_producer_stream);
opt_accumulate_stream->wait(event);
}
} else {
c10::optional<c10::Stream> opt_sync_stream = c10::nullopt;
const auto guard = c10::impl::VirtualGuardImpl{c10::DeviceType::CUDA};
if (on_consumer && !on_producer) {
// (3a)
opt_accumulate_stream = opt_consumer_stream;
opt_sync_stream = guard.getDefaultStream(opt_consumer_stream->device());
} else if (on_producer && !on_consumer) {
// (4a)
opt_accumulate_stream = guard.getDefaultStream(opt_producer_stream->device());
opt_sync_stream = opt_producer_stream;
} else {
// (5)
opt_accumulate_stream = guard.getDefaultStream(*device_of(var));
}
if (opt_sync_stream && (opt_accumulate_stream != opt_sync_stream)) {
// (3b), (4b)
c10::OptionalDeviceGuard device_guard{opt_sync_stream->device()};
auto event = c10::Event{c10::DeviceType::CUDA};
event.record(*opt_sync_stream);
opt_accumulate_stream->wait(event);
}
}
}
auto& old_var = buffer[pos];
if (!old_var.defined()) {
buffer[pos] = std::move(var);
} else {
if (opt_accumulate_stream) {
c10::OptionalStreamGuard stream_guard{opt_accumulate_stream};
accumulate(buffer, pos, std::move(var));
} else {
// (1) non-CUDA variable
// Accumulation happens on variable's device
c10::OptionalDeviceGuard device_guard{device_of(var)};
accumulate(buffer, pos, std::move(var));
}
}
}
auto InputBuffer::device() const -> at::Device {
// Since we pick the first non-CPU tensor, this won't work with
// mixed device-type operations (e.g., an op that is both CUDA
// and XLA). This is *incredibly* unlikely, so we don't worry
// about it.
for (auto& var : buffer) {
if (var.defined()) {
auto device = var.device();
if (device.type() != at::kCPU) {
return device;
}
}
}
// Only report to the CPU thread if there really were no tensors
// from other devices.
return at::kCPU;
}
auto InputBuffer::variables(InputBuffer&& g) -> std::vector<Variable> {
std::vector<Variable> result = std::move(g.buffer);
return result;
}
}} // namespace torch::autograd