forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_device_test.py
152 lines (141 loc) · 4.67 KB
/
model_device_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import unittest
from caffe2.proto import caffe2_pb2
from caffe2.python import (
workspace,
device_checker,
test_util,
model_helper,
brew,
)
class TestMiniAlexNet(test_util.TestCase):
def _MiniAlexNetNoDropout(self, order):
# First, AlexNet using the cnn wrapper.
model = model_helper.ModelHelper(name="alexnet")
conv1 = brew.conv(
model,
"data",
"conv1",
3,
16,
11,
("XavierFill", {}),
("ConstantFill", {}),
stride=4,
pad=0
)
relu1 = brew.relu(model, conv1, "relu1")
norm1 = brew.lrn(model, relu1, "norm1", size=5, alpha=0.0001, beta=0.75)
pool1 = brew.max_pool(model, norm1, "pool1", kernel=3, stride=2)
conv2 = brew.group_conv(
model,
pool1,
"conv2",
16,
32,
5,
("XavierFill", {}),
("ConstantFill", {"value": 0.1}),
group=2,
stride=1,
pad=2
)
relu2 = brew.relu(model, conv2, "relu2")
norm2 = brew.lrn(model, relu2, "norm2", size=5, alpha=0.0001, beta=0.75)
pool2 = brew.max_pool(model, norm2, "pool2", kernel=3, stride=2)
conv3 = brew.conv(
model,
pool2,
"conv3",
32,
64,
3,
("XavierFill", {'std': 0.01}),
("ConstantFill", {}),
pad=1
)
relu3 = brew.relu(model, conv3, "relu3")
conv4 = brew.group_conv(
model,
relu3,
"conv4",
64,
64,
3,
("XavierFill", {}),
("ConstantFill", {"value": 0.1}),
group=2,
pad=1
)
relu4 = brew.relu(model, conv4, "relu4")
conv5 = brew.group_conv(
model,
relu4,
"conv5",
64,
32,
3,
("XavierFill", {}),
("ConstantFill", {"value": 0.1}),
group=2,
pad=1
)
relu5 = brew.relu(model, conv5, "relu5")
pool5 = brew.max_pool(model, relu5, "pool5", kernel=3, stride=2)
fc6 = brew.fc(
model, pool5, "fc6", 1152, 1024, ("XavierFill", {}),
("ConstantFill", {"value": 0.1})
)
relu6 = brew.relu(model, fc6, "relu6")
fc7 = brew.fc(
model, relu6, "fc7", 1024, 1024, ("XavierFill", {}),
("ConstantFill", {"value": 0.1})
)
relu7 = brew.relu(model, fc7, "relu7")
fc8 = brew.fc(
model, relu7, "fc8", 1024, 5, ("XavierFill", {}),
("ConstantFill", {"value": 0.0})
)
pred = brew.softmax(model, fc8, "pred")
xent = model.LabelCrossEntropy([pred, "label"], "xent")
loss = model.AveragedLoss([xent], ["loss"])
model.AddGradientOperators([loss])
return model
def _testMiniAlexNet(self, order):
# First, we get all the random initialization of parameters.
model = self._MiniAlexNetNoDropout(order)
workspace.ResetWorkspace()
workspace.RunNetOnce(model.param_init_net)
inputs = dict(
[(str(name), workspace.FetchBlob(str(name))) for name in
model.params]
)
if order == "NCHW":
inputs["data"] = np.random.rand(4, 3, 227, 227).astype(np.float32)
else:
inputs["data"] = np.random.rand(4, 227, 227, 3).astype(np.float32)
inputs["label"] = np.array([1, 2, 3, 4]).astype(np.int32)
cpu_device = caffe2_pb2.DeviceOption()
cpu_device.device_type = caffe2_pb2.CPU
gpu_device = caffe2_pb2.DeviceOption()
gpu_device.device_type = workspace.GpuDeviceType
checker = device_checker.DeviceChecker(0.05, [cpu_device, gpu_device])
ret = checker.CheckNet(
model.net.Proto(),
inputs,
# The indices sometimes may be sensitive to small numerical
# differences in the input, so we ignore checking them.
ignore=['_pool1_idx', '_pool2_idx', '_pool5_idx']
)
self.assertEqual(ret, True)
@unittest.skipIf(not workspace.has_gpu_support,
"No GPU support. Skipping test.")
def testMiniAlexNetNCHW(self):
self._testMiniAlexNet("NCHW")
# No Group convolution support for NHWC right now
#@unittest.skipIf(not workspace.has_gpu_support,
# "No GPU support. Skipping test.")
#def testMiniAlexNetNHWC(self):
# self._testMiniAlexNet("NHWC")
if __name__ == '__main__':
unittest.main()