forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
240 lines (193 loc) · 7.45 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
## @package cnn
# Module caffe2.python.cnn
from caffe2.python import brew, workspace
from caffe2.python.model_helper import ModelHelper
from caffe2.proto import caffe2_pb2
import logging
class CNNModelHelper(ModelHelper):
"""A helper model so we can write CNN models more easily, without having to
manually define parameter initializations and operators separately.
"""
def __init__(self, order="NCHW", name=None,
use_cudnn=True, cudnn_exhaustive_search=False,
ws_nbytes_limit=None, init_params=True,
skip_sparse_optim=False,
param_model=None):
logging.warning(
"[====DEPRECATE WARNING====]: you are creating an "
"object from CNNModelHelper class which will be deprecated soon. "
"Please use ModelHelper object with brew module. For more "
"information, please refer to caffe2.ai and python/brew.py, "
"python/brew_test.py for more information."
)
cnn_arg_scope = {
'order': order,
'use_cudnn': use_cudnn,
'cudnn_exhaustive_search': cudnn_exhaustive_search,
}
if ws_nbytes_limit:
cnn_arg_scope['ws_nbytes_limit'] = ws_nbytes_limit
super(CNNModelHelper, self).__init__(
skip_sparse_optim=skip_sparse_optim,
name="CNN" if name is None else name,
init_params=init_params,
param_model=param_model,
arg_scope=cnn_arg_scope,
)
self.order = order
self.use_cudnn = use_cudnn
self.cudnn_exhaustive_search = cudnn_exhaustive_search
self.ws_nbytes_limit = ws_nbytes_limit
if self.order != "NHWC" and self.order != "NCHW":
raise ValueError(
"Cannot understand the CNN storage order %s." % self.order
)
def ImageInput(self, blob_in, blob_out, use_gpu_transform=False, **kwargs):
return brew.image_input(
self,
blob_in,
blob_out,
order=self.order,
use_gpu_transform=use_gpu_transform,
**kwargs
)
def VideoInput(self, blob_in, blob_out, **kwargs):
return brew.video_input(
self,
blob_in,
blob_out,
**kwargs
)
def PadImage(self, blob_in, blob_out, **kwargs):
# TODO(wyiming): remove this dummy helper later
self.net.PadImage(blob_in, blob_out, **kwargs)
def ConvNd(self, *args, **kwargs):
return brew.conv_nd(
self,
*args,
use_cudnn=self.use_cudnn,
order=self.order,
cudnn_exhaustive_search=self.cudnn_exhaustive_search,
ws_nbytes_limit=self.ws_nbytes_limit,
**kwargs
)
def Conv(self, *args, **kwargs):
return brew.conv(
self,
*args,
use_cudnn=self.use_cudnn,
order=self.order,
cudnn_exhaustive_search=self.cudnn_exhaustive_search,
ws_nbytes_limit=self.ws_nbytes_limit,
**kwargs
)
def ConvTranspose(self, *args, **kwargs):
return brew.conv_transpose(
self,
*args,
use_cudnn=self.use_cudnn,
order=self.order,
cudnn_exhaustive_search=self.cudnn_exhaustive_search,
ws_nbytes_limit=self.ws_nbytes_limit,
**kwargs
)
def GroupConv(self, *args, **kwargs):
return brew.group_conv(
self,
*args,
use_cudnn=self.use_cudnn,
order=self.order,
cudnn_exhaustive_search=self.cudnn_exhaustive_search,
ws_nbytes_limit=self.ws_nbytes_limit,
**kwargs
)
def GroupConv_Deprecated(self, *args, **kwargs):
return brew.group_conv_deprecated(
self,
*args,
use_cudnn=self.use_cudnn,
order=self.order,
cudnn_exhaustive_search=self.cudnn_exhaustive_search,
ws_nbytes_limit=self.ws_nbytes_limit,
**kwargs
)
def FC(self, *args, **kwargs):
return brew.fc(self, *args, **kwargs)
def PackedFC(self, *args, **kwargs):
return brew.packed_fc(self, *args, **kwargs)
def FC_Prune(self, *args, **kwargs):
return brew.fc_prune(self, *args, **kwargs)
def FC_Decomp(self, *args, **kwargs):
return brew.fc_decomp(self, *args, **kwargs)
def FC_Sparse(self, *args, **kwargs):
return brew.fc_sparse(self, *args, **kwargs)
def Dropout(self, *args, **kwargs):
return brew.dropout(
self, *args, order=self.order, use_cudnn=self.use_cudnn, **kwargs
)
def LRN(self, *args, **kwargs):
return brew.lrn(
self, *args, order=self.order, use_cudnn=self.use_cudnn, **kwargs
)
def Softmax(self, *args, **kwargs):
return brew.softmax(self, *args, use_cudnn=self.use_cudnn, **kwargs)
def SpatialBN(self, *args, **kwargs):
return brew.spatial_bn(self, *args, order=self.order, **kwargs)
def SpatialGN(self, *args, **kwargs):
return brew.spatial_gn(self, *args, order=self.order, **kwargs)
def InstanceNorm(self, *args, **kwargs):
return brew.instance_norm(self, *args, order=self.order, **kwargs)
def Relu(self, *args, **kwargs):
return brew.relu(
self, *args, order=self.order, use_cudnn=self.use_cudnn, **kwargs
)
def PRelu(self, *args, **kwargs):
return brew.prelu(self, *args, **kwargs)
def Concat(self, *args, **kwargs):
return brew.concat(self, *args, order=self.order, **kwargs)
def DepthConcat(self, *args, **kwargs):
"""The old depth concat function - we should move to use concat."""
print("DepthConcat is deprecated. use Concat instead.")
return self.Concat(*args, **kwargs)
def Sum(self, *args, **kwargs):
return brew.sum(self, *args, **kwargs)
def Transpose(self, *args, **kwargs):
return brew.transpose(self, *args, use_cudnn=self.use_cudnn, **kwargs)
def Iter(self, *args, **kwargs):
return brew.iter(self, *args, **kwargs)
def Accuracy(self, *args, **kwargs):
return brew.accuracy(self, *args, **kwargs)
def MaxPool(self, *args, **kwargs):
return brew.max_pool(
self, *args, use_cudnn=self.use_cudnn, order=self.order, **kwargs
)
def MaxPoolWithIndex(self, *args, **kwargs):
return brew.max_pool_with_index(self, *args, order=self.order, **kwargs)
def AveragePool(self, *args, **kwargs):
return brew.average_pool(
self, *args, use_cudnn=self.use_cudnn, order=self.order, **kwargs
)
@property
def XavierInit(self):
return ('XavierFill', {})
def ConstantInit(self, value):
return ('ConstantFill', dict(value=value))
@property
def MSRAInit(self):
return ('MSRAFill', {})
@property
def ZeroInit(self):
return ('ConstantFill', {})
def AddWeightDecay(self, weight_decay):
return brew.add_weight_decay(self, weight_decay)
@property
def CPU(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CPU
return device_option
@property
def GPU(self, gpu_id=0):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = gpu_id
return device_option