-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.toml
67 lines (57 loc) · 3.08 KB
/
config.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
[global]
root = '.' # Root directory
random_seed = 3407
[train]
cutoff = 4.0 # Cutoff radius of machine learning potential
val_ratio = 0.1 # The ratio of validation points in the provided dataset
num_interactions = 3 # Number of message-passing layers
node_size = 128 # Node feature size
output_dir = 'model_output' # Model output path
dataset = '/content/drive/My Drive/my-path-to/tutorial-video/4waters.traj' # Dataset for training
max_steps = 2000 # Maximum steps for training
device = 'cuda' # Use GPU
batch_size = 32 # Batch size for training
initial_lr = 0.001 # Initial learning rate
forces_weight = 0.98 # Ratio of force loss to total loss
log_interval = 200 # Evaluate model every 200 steps
normalization = false # Normalize energy in the dataset
atomwise_normalization = false # Normalize atomic energy, scale the output atomic energy to the same level.
stop_patience = 1000 # When test loss is larger than training loss for p times, training stops.
plateau_scheduler = true # Use ReduceLROnPlateau scheduler to decrease lr when learning curve plateaus
random_seed = 3407 # Random seed ensures the reproducibility of experiments
[train.ensemble]
108_node_3_layer = {node_size = 108, num_interactions = 3}
112_node_3_layer = {node_size = 112, num_interactions = 3}
#116_node_3_layer = {node_size = 116, num_interactions = 3} # Commented out
#124_node_3_layer = {node_size = 124, num_interactions = 3} # Commented out
[train.resource]
tmax = '10h' # Time limit for each job
cores = 8 # Cores on the node
[MD.runs.water]
init_traj = '/content/drive/MyDrive/my-path-to/tutorial-video/4waters.traj' # Initial configuration for running MD
time_step = 0.1 # Time step for MD
temperature = 300 # Temperature for MD
device = 'cuda' # Use GPU
start_indice = 1 # Select initial configuration
max_steps = 3000 # Maximum MD steps
min_steps = 150 # Minimum MD steps
dump_step = 5 # Dump a structure for every 5 steps
friction = 0.01 # Friction coefficient
print_step = 2 # Print MD info for every 2 steps
num_uncertain = 100 # If 100 uncertain structures are collected, the simulation stops
random_seed = 3407 # Reproducibility
[MD.resource]
#tmax = '10h' # Commented out
cores = 1 # Cores on the node
[select.runs]
water = {'method' = 'MD', 'train_set' = '/content/drive/My Drive/my-path-to/tutorial-video/4waters.traj', 'kernel' = 'full-g', 'selection' = 'lcmd_greedy', 'n_random_features' = 500, 'batch_size' = 10, 'device' = 'cuda', 'random_seed' = 3407}
[select.resource]
tmax = '10h' # Time limit for each job
cores = 1 # Cores on the node
[labeling.runs]
method = 'GPAW'
[labeling.runs.water]
nupdown = 48
[labeling.resource]
tmax = '10h' # Time limit for each job
cores = 1 # Cores on the node