-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
67 lines (57 loc) · 2.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (c) 2021 Redlink GmbH
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This is the webservice exposing functionality of the stanza service.
import logging
import os
import queue
import cherrypy
import stanza
from stanzaService import StanzaService
import analysisProcess
import multiprocessing
stanzaService = None
class StanzaWebService(object):
@cherrypy.expose
@cherrypy.tools.json_out()
@cherrypy.tools.json_in()
def process(self):
input_json = cherrypy.request.json
return stanzaService.process(text=input_json["text"], lang=input_json["lang"])
# main
if __name__ == '__main__':
multiprocessing.set_start_method('spawn') # CUDA requires spawn for multiprocessing!
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
languages = os.environ.get('STANZA_SERVER_LANGUAGES', 'en')
default_pipeline = os.environ.get('STANZA_SERVER_PIPELINE', 'tokenize,mwt,pos,lemma,ner')
timeout_str = os.environ.get('STANZA_SERVER_PIPELINE_TIMEOUT', "0")
timeout = int(timeout_str) if timeout_str is not None else None
analysis_process_timeout = timeout if timeout > 0 else None
analysis_processes = {}
if languages is not None:
for lang in languages.split(','):
stanza.download(lang) # download the model
pipeline = os.environ.get("STANZA_SERVER_PIPELINE_{}".format(lang.upper()), default_pipeline)
count_str = os.environ.get("STANZA_SERVER_PIPELINE_{}_COUNT".format(lang.upper()), "1")
count = int(count_str) if count_str is not None else 1
if pipeline is not None:
analysis_processes[lang] = queue.Queue(count)
logging.info("Initialize %d analysis process%s for language '%s' with pipeline: %s",
count, "es" if count > 1 else "", lang, pipeline)
for _ in range(count):
analysis_processes[lang].put(analysisProcess.AnalysisProcess(lang, pipeline))
stanzaService = StanzaService(analysis_processes, analysis_process_timeout)
config = {'server.socket_host': '0.0.0.0'}
cherrypy.config.update(config)
cherrypy.quickstart(StanzaWebService())