-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrl_run.py
268 lines (234 loc) · 13.1 KB
/
rl_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import torch
import numpy as np
import datetime
from parser import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
from parser import (tree_to_token_index,
tree_to_token_nodes,
index_to_code_token,
tree_to_variable_index,
detokenize_code)
from tree_sitter import Language, Parser
from reward import remove_special_tokens, tree_sitter_full_compile, get_reward
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
from model import CodeT5HeadWithValueModel, respond_to_batch
from transformers import RobertaTokenizer
from ppo import PPOTrainer
import torch
from itertools import cycle
from tqdm import tqdm
from bleu import _bleu
from utils import extract_structure, Example, read_examples, convert_examples_to_features, InputFeatures
import argparse
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--l1", default=None, type=str,
help="source language")
parser.add_argument("--l2", default=None, type=str,
help="target language")
parser.add_argument("--asp", default=2, type=int,
help="action space")
parser.add_argument("--ns", default=5, type=int,
help="num syn samples")
parser.add_argument("--data_path", default=None, type=str,
help="data parent directory")
parser.add_argument("--output_path", default=None, type=str,
help="output directory")
parser.add_argument("--load_model_path", default=None, type=str,
help="path to load models")
parser.add_argument("--baseline_output_path", default=None, type=str,
help="path to load models")
parser.add_argument("--max_source_length", default=400, type=int,
help="maximum source length")
parser.add_argument("--max_target_length", default=400, type=int,
help="maximum target length")
parser.add_argument("--train_batch_size", default=16, type=int,
help="train_batch_size")
parser.add_argument("--test_batch_size", default=48, type=int,
help="test_batch_size")
parser.add_argument("--train_epochs", default=1000000, type=int,
help="test_batch_size")
parser.add_argument("--run", default=1, type=int,
help="run ID")
parser.add_argument("--lr", type=float, default=1e-5, help="Learning rate")
parser.add_argument("--kl_coef", type=float, default=0.05, help="KL Coefficient")
parser.add_argument("--kl_target", type=float, default=1, help="Adaptive KL Target")
parser.add_argument("--vf_coef", type=float, default=1e-3, help="Coefficient of the Value Error")
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data_parent_dir = args.data_path
dir_dict = {'javascript':'Javascript', 'java':'Java', 'c_sharp':'C#', 'php':'PHP', 'python':'Python', 'c':'C', 'cpp':'C++'}
end_dict = {'javascript':'js', 'java':'java', 'c_sharp':'cs', 'php':'php', 'python':'py', 'c':'c', 'cpp':'cpp'}
l1, l2 = args.l1, args.l2
data_dir = data_parent_dir + '/' + dir_dict[l1] + '-' + dir_dict[l2] + '/'
template = data_dir+'train-XXX-YYY-tok.xxx,'+data_dir+'train-XXX-YYY-tok.yyy'
template = template.replace('XXX', dir_dict[l1]).replace('YYY', dir_dict[l2])
if not(os.path.exists(data_dir)):
data_dir = data_parent_dir + '/' + dir_dict[l2] + '-' + dir_dict[l1] + '/'
template = data_dir+'train-XXX-YYY-tok.xxx,'+data_dir+'train-XXX-YYY-tok.yyy'
template = template.replace('XXX', dir_dict[l2]).replace('YYY', dir_dict[l1])
train_filename = template.replace('xxx', end_dict[l1]).replace('yyy', end_dict[l2])
dev_filename = train_filename.replace('train', 'val')
test_filename = train_filename.replace('train', 'test')
baseline_output_dir = args.baseline_output_path + '/'+l1+'-'+l2+'/'
load_model_path = args.load_model_path
output_dir = args.output_path + '/'+l1+'-'+l2+'/'
dfg_function={
'python':DFG_python,
'java':DFG_java,
'php':DFG_php,
'javascript':DFG_javascript,
'c_sharp':DFG_csharp,
'c':DFG_csharp,
'cpp':DFG_csharp,}
parsers={}
for lang in dfg_function:
LANGUAGE = Language('parser/my-languages.so', lang)
parser = Parser()
parser.set_language(LANGUAGE)
parser = [parser,dfg_function[lang]]
parsers[lang]= parser
def get_dataset(features):
all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long)
all_source_mask = torch.tensor([f.source_mask for f in features], dtype=torch.long)
all_target_ids = torch.tensor([f.target_ids for f in features], dtype=torch.long)
all_target_mask = torch.tensor([f.target_mask for f in features], dtype=torch.long)
indices = torch.arange(len(features))
data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask,indices)
return data
#load models
model = CodeT5HeadWithValueModel()
model.load_base_model(args.load_model_path)
model.to(args.device)
model_ref = CodeT5HeadWithValueModel()
model_ref.load_base_model(args.load_model_path)
model_ref.to(args.device)
tokenizer = RobertaTokenizer.from_pretrained("Salesforce/codet5-base", do_lower_case=False)
ppo_config = {"batch_size": args.train_batch_size, 'eos_token_id': tokenizer.eos_token_id, 'lr':args.lr, "adap_kl_ctrl": True, 'init_kl_coef':args.kl_coef,"target":args.kl_target, "vf_coef":args.vf_coef}
ppo_trainer = PPOTrainer(model, model_ref, **ppo_config)
#load features
train_examples = read_examples(args.train_filename, args)
train_features = convert_examples_to_features(train_examples, tokenizer, args, stage='train')
dev_examples = read_examples(args.dev_filename, args)
dev_features = convert_examples_to_features(dev_examples, tokenizer, args, stage='train')
test_examples = read_examples(args.test_filename, args)
test_features = convert_examples_to_features(test_examples, tokenizer, args, stage='train')
def test(epoch,features, dataloader, prefix):
pbar = dataloader
pred_ids = []
pred_ids_ref = []
indices = []
nerrors = 0
nerrors_ref = 0
with torch.no_grad():
for batch in pbar:
batch = tuple(t.to(args.device) for t in batch)
source_ids,source_mask,target_ids,target_mask,ind = batch
preds = respond_to_batch(model, source_ids, source_mask, max_target_length=args.max_target_length, \
top_k=args.asp, top_p=1.0)[:,1:]
preds_ref = respond_to_batch(model_ref, source_ids, source_mask, max_target_length=args.max_target_length, \
top_k=args.asp, top_p=1.0)[:,1:]
nerrors += sum(get_reward(code_ids=preds, code_ref_ids=preds_ref,gold_ids=target_ids, tokenizer=tokenizer)[4])
top_preds = list(preds.cpu().numpy())
pred_ids.extend(top_preds)
nerrors_ref += sum(get_reward(code_ids=preds_ref,code_ref_ids=preds_ref,gold_ids=target_ids, tokenizer=tokenizer)[5])
top_preds = list(preds_ref.cpu().numpy())
pred_ids_ref.extend(top_preds)
indices.extend(list(ind.cpu().numpy()))
p = [tokenizer.decode(id, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for id in pred_ids]
p_ref = [tokenizer.decode(id, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for id in pred_ids_ref]
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(path,prefix+".model"+ "_ep%d"%(epoch) ),'w') as f_model, \
open(os.path.join(path,prefix+".gold"+ "_ep%d"%(epoch) ),'w') as f_gold, \
open(os.path.join(path,prefix+".model_ref"+ "_ep%d"%(epoch) ),'w') as f_ref:
for pred,ref,i in zip(p,p_ref,indices):
f_model.write(pred+'\n')
f_ref.write(ref+'\n')
f_gold.write(features[i].target+'\n')
return nerrors, nerrors_ref
#datasets
train_data = get_dataset(train_features)
train_dataloader = DataLoader(train_data, batch_size=args.train_batch_size, shuffle=True)
dev_data = get_dataset(dev_features)
dev_dataloader = DataLoader(train_data, batch_size=args.train_batch_size, shuffle=False)
test_data = get_dataset(test_features)
test_dataloader = DataLoader(test_data, batch_size=args.train_batch_size, shuffle=False)
#training
nsteps = 0
total_nerrors = 0
total_rewards = 0
total_nnodes = 0
total_nerrors_ref = 0
total_nnodes_ref = 0
total_seen = 0
n_syn_samples = args.ns
for ep in range(args.train_epochs):
for samp in range(n_syn_samples):
pbar = tqdm(train_dataloader, total=len(train_dataloader))
for batch in pbar:
batch = tuple(t.to(args.device) for t in batch)
source_ids,source_mask,target_ids,target_mask, _ = batch
response_ids = torch.clone(respond_to_batch(model, source_ids, source_mask, \
max_target_length=args.max_target_length, \
top_k=args.asp, top_p=1.0).detach()[:,1:])
response_codes = tokenizer.batch_decode(response_ids, skip_special_tokens=True, \
clean_up_tokenization_spaces=False)
response_ids_ref = torch.clone(respond_to_batch(model_ref, source_ids, source_mask, \
max_target_length=args.max_target_length, \
top_k=args.asp, top_p=1.0).detach()[:,1:])
reward,mean_rate,mean_ast_match,mean_dfg_match, num_errors,num_errors_ref, num_nodes,num_nodes_ref = get_reward(lang = args.l2, code_ids=response_ids,code_ref_ids=response_ids_ref, gold_ids=target_ids, tokenizer=tokenizer)
total_rewards += sum([reward.sum(axis=-1).tolist()])
total_nerrors += sum(num_errors)
total_nnodes += sum(num_nodes)
total_nerrors_ref += sum(num_errors_ref)
total_nnodes_ref += sum(num_nodes_ref)
total_seen += len(source_ids)
pbar.set_description('Avg # errors per sample:'+str(round(total_nerrors/total_seen, 5)))
#PPO Step
train_stats = ppo_trainer.step(source_ids, source_mask, response_ids,response_ids_ref, reward.to(args.device))
mean_kl = train_stats['objective/kl']
mean_entropy = train_stats['objective/entropy']
loss, pg_loss, vf_loss = train_stats['ppo/loss/total'], train_stats['ppo/loss/policy'], train_stats['ppo/loss/value']
mean_advg, mean_return,mean_val = train_stats['ppo/policy/advantages_mean'], train_stats['ppo/returns/mean'], train_stats['ppo/val/mean']
nsteps += 1
#save the results
with open(output_dir+'results/'+l1+'-'+l2+'.csv', 'a') as f:
f.write( datetime.datetime.now().strftime("%H:%M:%S") +
',' + str(args.run)+
',' + str(args.train_batch_size)+
',' + str(args.max_source_length)+
',' + str(args.max_target_length)+
',' + str(args.lr)+
',' + str(ep)+
',' + str(nsteps)+
',' + str(round(sum([reward.sum(axis=-1).tolist()])/len(source_ids), 4))+
',' + str(round(sum(num_errors)/len(source_ids), 4))+
',' + str(round(sum(num_errors_ref)/len(source_ids), 4))+
',' + str(round(sum(num_nodes)/len(source_ids), 4))+
',' + str(round(sum(num_nodes_ref)/len(source_ids),4)) +
',' + str(mean_kl) +
',' + str(mean_entropy) +
',' + str(loss.item()) +
',' + str(pg_loss.item()) +
',' + str(vf_loss.item()) +
',' + str(mean_advg.item()) +
',' + str(mean_return.item()) +
',' + str(mean_val.item()) +
',' + str(mean_rate) +
',' + str(mean_ast_match) +
',' + str(mean_dfg_match)
+ '\n')
path = output_dir
path = os.path.join(path, 'checkpoints')
if not os.path.exists(path):
os.makedirs(path)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(output_dir, "pytorch_model_ep%d.bin"%(ep))
torch.save(model_to_save.state_dict(), output_model_file)
train_dataloader2 = DataLoader(train_data, batch_size=args.test_batch_size, shuffle=False)
test_dataloader2 = DataLoader(test_data, batch_size=args.test_batch_size, shuffle=False)
nerrors, nerrors_ref = test(ep,train_features, train_dataloader2, 'train')
nerrors_test, nerrors_ref_test = test(ep,test_features, test_dataloader2, 'test')