-
Notifications
You must be signed in to change notification settings - Fork 11
/
ppo.py
237 lines (192 loc) · 9.82 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02-ppo.ipynb (unless otherwise specified).
__all__ = ['AdaptiveKLController', 'FixedKLController', 'PPOTrainer']
# Cell
import numpy as np
import torch.nn.functional as F
from torch.optim import Adam, AdamW
import torch.optim as optim
import torch
import collections
import time
import random
from transformers import RobertaTokenizer
from utils import (logprobs_from_logits,
whiten,
clip_by_value,
entropy_from_logits,
flatten_dict,
average_torch_dicts,
stats_to_np,
stack_dicts,
add_suffix)
class AdaptiveKLController:
def __init__(self, init_kl_coef, target, horizon):
self.value = init_kl_coef
self.target = target
self.horizon = horizon
def update(self, current, n_steps):
target = self.target
proportional_error = np.clip(current / target - 1, -0.2, 0.2)
mult = 1 + proportional_error * n_steps / self.horizon
self.value *= mult
class FixedKLController:
def __init__(self, kl_coef):
self.value = kl_coef
def update(self, current, n_steps):
pass
class PPOTrainer:
default_params = {
"lr": 1e-5,
"adap_kl_ctrl": True,
"init_kl_coef": 100,
"target": 6,
"horizon":10000,
"gamma":1,
"lam":0.95,
"cliprange": .2,
"cliprange_value":.2,
"vf_coef":0.1,
"batch_size": 48,
"forward_batch_size": 16,
"ppo_epochs": 4,
"device": torch.device("cuda"),
'adam_eps': 1e-8
}
def __init__(self, model, ref_model, **ppo_params):
self.ppo_params = self.default_params
self.ppo_params.update(ppo_params)
self.ref_model = ref_model
self.model = model
self.optimizer = AdamW(model.parameters(), lr=self.ppo_params['lr'], eps=self.ppo_params['adam_eps'])
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer = self.optimizer, factor =1. / np.cbrt(2), patience= 100, verbose = True)
self.metric = 0
if self.ppo_params['adap_kl_ctrl']:
self.kl_ctl = AdaptiveKLController(self.ppo_params['init_kl_coef'],
self.ppo_params['target'],
self.ppo_params['horizon'])
else:
self.kl_ctl = FixedKLController(self.ppo_params['init_kl_coef'])
def step(self, source_ids, source_mask, response_ids,response_ids_ref, scores):
bs = source_ids.size()[0]
timing = dict()
t0 = time.time()
t = time.time()
logprobs, ref_logprobs, values = self.batched_forward_pass(source_ids, source_mask, response_ids)
timing['time/ppo/forward_pass'] = time.time()-t
t = time.time()
rewards, non_score_reward, kl_coef = self.compute_rewards(scores, logprobs, ref_logprobs)
timing['time/ppo/compute_rewards'] = time.time()-t
t = time.time()
all_stats = []
idxs = list(range(bs))
max_target_len = response_ids.size()[1]
for i in range(bs):
idx = idxs[i]
curr_len = (np.array(response_ids.cpu()[idx,:])==self.ppo_params['eos_token_id']).argmax() + 1
train_stats = self.train_minibatch(logprobs[idx:idx+1, :curr_len], values[idx:idx+1, :curr_len],
rewards[idx:idx+1, :curr_len], source_ids[idx:idx+1],
source_mask[idx:idx+1], response_ids[idx:idx+1,:curr_len],response_ids_ref[idx:idx+1,:curr_len])
all_stats.append(train_stats)
timing['time/ppo/optimize_step'] = time.time()-t
t = time.time()
train_stats = stack_dicts(all_stats)
train_stats['policy/advantages'] = torch.flatten(train_stats['policy/advantages']).unsqueeze(0)
train_stats['policy/ratio'] = torch.flatten(train_stats['policy/ratio']).unsqueeze(0)
stats = self.record_step_stats(scores=scores, logprobs=logprobs, ref_logprobs=ref_logprobs,
non_score_reward=non_score_reward, train_stats=train_stats,
kl_coef=kl_coef, response_ids = response_ids)
stats = stats_to_np(stats)
timing['time/ppo/calc_stats'] = time.time()-t
self.kl_ctl.update(stats['objective/kl'], self.ppo_params['batch_size'])
timing['time/ppo/total'] = time.time()-t0
stats.update(timing)
return stats
def batched_forward_pass(self, source_ids, source_mask, response_ids):
with torch.no_grad():
logits, _, values = self.model(input_ids=source_ids, attention_mask=source_mask, labels=response_ids)
ref_logits, _, _ = self.ref_model(input_ids=source_ids, attention_mask=source_mask, labels=response_ids)
values = values.detach()
logprobs = logprobs_from_logits(logits, response_ids).detach()
ref_logprobs = logprobs_from_logits(ref_logits, response_ids).detach()
return logprobs, ref_logprobs, values
def train_minibatch(self, logprobs, values, rewards, source_ids, source_mask, response_ids,response_ids_ref):
"""Train one PPO minibatch"""
loss_p, loss_v, train_stats = self.loss(logprobs, values, rewards, source_ids, source_mask, response_ids,response_ids_ref)
loss = loss_p + loss_v
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.scheduler.step(self.metric)
return train_stats
def compute_rewards(self, scores, logprobs, ref_logprobs):
"""Compute per token rewards from scores and KL-penalty."""
kl = logprobs - ref_logprobs
non_score_reward = -self.kl_ctl.value * kl
rewards = non_score_reward.clone().detach()
print ('kl reward', rewards.mean(axis=-1))
rewards += scores
print ('score reward', scores.sum(axis=-1))
return rewards, non_score_reward, self.kl_ctl.value
def loss(self, old_logprobs, values, rewards, source_ids, source_mask, response_ids,response_ids_ref): ##MODIFIED
lastgaelam = 0
advantages_reversed = []
gen_len = response_ids.size()[1]
for t in reversed(range(gen_len)):
nextvalues = values[:, t + 1] if t < gen_len - 1 else 0.0
delta = rewards[:, t] + self.ppo_params['gamma'] * nextvalues - values[:, t]
lastgaelam = delta + self.ppo_params['gamma'] * self.ppo_params['lam'] * lastgaelam
advantages_reversed.append(lastgaelam)
advantages = torch.stack(advantages_reversed[::-1]).transpose(0, 1)
returns = advantages + values
advantages = whiten(advantages)
advantages = advantages.detach()
logits, _, vpred = self.model(input_ids=source_ids, attention_mask=source_mask, labels=response_ids)
logprob = logprobs_from_logits(logits, response_ids)
vpredclipped = clip_by_value(vpred,
values - self.ppo_params["cliprange_value"],
values + self.ppo_params["cliprange_value"])
vf_losses1 = (vpred - returns)**2
vf_losses2 = (vpredclipped - returns)**2
vf_loss = .5 * torch.mean(torch.max(vf_losses1, vf_losses2))
vf_clipfrac = torch.mean(torch.gt(vf_losses2, vf_losses1).double())
ratio = torch.exp(logprob - old_logprobs)
pg_losses = -advantages * ratio
pg_losses2 = -advantages * torch.clamp(ratio,
1.0 - self.ppo_params['cliprange'],
1.0 + self.ppo_params['cliprange'])
pg_loss = torch.mean(torch.max(pg_losses, pg_losses2))
pg_clipfrac = torch.mean(torch.gt(pg_losses2, pg_losses).double())
loss = pg_loss + self.ppo_params['vf_coef'] * vf_loss
entropy = torch.mean(entropy_from_logits(logits))
approxkl = .5 * torch.mean((logprob - old_logprobs)**2)
policykl = torch.mean(logprob - old_logprobs)
return_mean, return_var = torch.mean(returns), torch.var(returns)
value_mean, value_var = torch.mean(values), torch.var(values)
stats = dict(
loss=dict(policy=pg_loss, value=vf_loss, total=loss),
policy=dict(entropy=entropy, approxkl=approxkl,policykl=policykl, clipfrac=pg_clipfrac,
advantages=advantages, advantages_mean=torch.mean(advantages), ratio=ratio),
returns=dict(mean=return_mean, var=return_var),
val=dict(vpred=torch.mean(vpred), error=torch.mean((vpred - returns) ** 2),
clipfrac=vf_clipfrac, mean=value_mean, var=value_var),)
return pg_loss, self.ppo_params['vf_coef'] * vf_loss, flatten_dict(stats)
def record_step_stats(self, kl_coef, **data):
"""Record training step statistics."""
kl = data['logprobs'] - data['ref_logprobs']
mean_kl = torch.mean(torch.sum(kl, axis=-1))
mean_kl = torch.max(-mean_kl,mean_kl)
mean_entropy = torch.mean(torch.sum(-data['logprobs'], axis=1))
mean_non_score_reward =torch.mean(torch.sum(data['non_score_reward'], axis=1))
stats = {
'objective/kl': mean_kl,
'objective/kl_dist': kl,
'objective/logprobs': data['logprobs'],
'objective/ref_logprobs': data['ref_logprobs'],
'objective/kl_coef': kl_coef,
'objective/entropy': mean_entropy,
'ppo/mean_non_score_reward': mean_non_score_reward,
}
for k, v in data['train_stats'].items():
stats[f'ppo/{k}'] = torch.mean(v, axis=0)
stats['ppo/val/var_explained'] = 1 - stats['ppo/val/error'] / stats['ppo/returns/var']
return stats