-
Notifications
You must be signed in to change notification settings - Fork 43
/
grid_cond_gfn.py
409 lines (352 loc) · 15.3 KB
/
grid_cond_gfn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import argparse
import gzip
import itertools
import os
import pickle # nosec B403
from collections import defaultdict
from itertools import chain, count
import numpy as np
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from scipy.stats import norm
from torch.distributions.categorical import Categorical
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--save_path", default="results/example_branincurrin.pkl.gz", type=str)
parser.add_argument("--device", default="cpu", type=str)
parser.add_argument("--progress", action="store_true") # Shows a tqdm bar
# GFN
parser.add_argument("--method", default="flownet_tb", type=str)
parser.add_argument("--learning_rate", default=1e-2, help="Learning rate", type=float)
parser.add_argument("--opt", default="adam", type=str)
parser.add_argument("--adam_beta1", default=0.9, type=float)
parser.add_argument("--adam_beta2", default=0.999, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--mbsize", default=128, help="Minibatch size", type=int)
parser.add_argument("--n_hid", default=64, type=int)
parser.add_argument("--n_layers", default=3, type=int)
parser.add_argument("--n_train_steps", default=5000, type=int)
# Measurement
parser.add_argument("--n_distr_measurements", default=50, type=int)
# Training
parser.add_argument("--n_mp_procs", default=4, type=int)
# Env
parser.add_argument("--func", default="BraninCurrin")
parser.add_argument("--horizon", default=32, type=int)
_dev = [torch.device("cpu")]
tf = lambda x: torch.FloatTensor(x).to(_dev[0]) # noqa
tl = lambda x: torch.LongTensor(x).to(_dev[0]) # noqa
def currin(x):
x_0 = x[..., 0] / 2 + 0.5
x_1 = x[..., 1] / 2 + 0.5
factor1 = 1 - np.exp(-1 / (2 * x_1 + 1e-10))
numer = 2300 * x_0**3 + 1900 * x_0**2 + 2092 * x_0 + 60
denom = 100 * x_0**3 + 500 * x_0**2 + 4 * x_0 + 20
return factor1 * numer / denom / 13.77 # Dividing by the max to help normalize
def branin(x):
x_0 = 15 * (x[..., 0] / 2 + 0.5) - 5
x_1 = 15 * (x[..., 1] / 2 + 0.5)
t1 = x_1 - 5.1 / (4 * np.pi**2) * x_0**2 + 5 / np.pi * x_0 - 6
t2 = 10 * (1 - 1 / (8 * np.pi)) * np.cos(x_0)
return 1 - (t1**2 + t2 + 10) / 308.13 # Dividing by the max to help normalize
class GridEnv:
def __init__(self, horizon, ndim=2, xrange=[-1, 1], funcs=None, obs_type="one-hot"):
self.horizon = horizon
self.start = [xrange[0]] * ndim
self.ndim = ndim
self.width = xrange[1] - xrange[0]
self.funcs = [lambda x: ((np.cos(x * 50) + 1) * norm.pdf(x * 5)).prod(-1) + 0.01] if funcs is None else funcs
self.num_cond_dim = len(self.funcs) + 1
self.xspace = np.linspace(*xrange, horizon)
self._true_density = None
self.obs_type = obs_type
if obs_type == "one-hot":
self.num_obs_dim = self.horizon * self.ndim
elif obs_type == "scalar":
self.num_obs_dim = self.ndim
elif obs_type == "tab":
self.num_obs_dim = self.horizon**self.ndim
def obs(self, s=None):
s = np.int32(self._state if s is None else s)
z = np.zeros(self.num_obs_dim + self.num_cond_dim)
if self.obs_type == "one-hot":
z = np.zeros((self.horizon * self.ndim + self.num_cond_dim), dtype=np.float32)
z[np.arange(len(s)) * self.horizon + s] = 1
elif self.obs_type == "scalar":
z[: self.ndim] = self.s2x(s)
elif self.obs_type == "tab":
idx = (s * (self.horizon ** np.arange(self.ndim))).sum()
z[idx] = 1
z[-self.num_cond_dim :] = self.cond_obs
return z
def s2x(self, s):
return s / (self.horizon - 1) * self.width + self.start
def s2r(self, s):
x = self.s2x(s)
return (self.coefficients * np.array([i(x) for i in self.funcs])).sum() ** self.temperature
def reset(self, coefs=None, temp=None):
self._state = np.int32([0] * self.ndim)
self._step = 0
self.coefficients = np.random.dirichlet([1.5] * len(self.funcs)) if coefs is None else coefs
self.temperature = np.random.gamma(2, 1) if temp is None else temp
self.cond_obs = np.concatenate([self.coefficients, [self.temperature]])
return self.obs(), self.s2r(self._state), self._state
def parent_transitions(self, s, used_stop_action):
if used_stop_action:
return [self.obs(s)], [self.ndim]
parents = []
actions = []
for i in range(self.ndim):
if s[i] > 0:
sp = s + 0
sp[i] -= 1
if sp.max() == self.horizon - 1: # can't have a terminal parent
continue
parents += [self.obs(sp)]
actions += [i]
return parents, actions
def step(self, a, s=None):
_s = s
s = (self._state if s is None else s) + 0
if a < self.ndim:
s[a] += 1
done = s.max() >= self.horizon - 1 or a == self.ndim
if _s is None:
self._state = s
self._step += 1
return self.obs(s), 0 if not done else self.s2r(s), done, s
def state_info(self):
all_int_states = np.float32(list(itertools.product(*[list(range(self.horizon))] * self.ndim)))
state_mask = (all_int_states == self.horizon - 1).sum(1) <= 1
pos = all_int_states[state_mask].astype("float")
s = pos / (self.horizon - 1) * (self.xspace[-1] - self.xspace[0]) + self.xspace[0]
r = np.stack([f(s) for f in self.funcs]).T
return s, r, pos
def generate_backward(self, r, s0, reset=False):
if reset:
self.reset(coefs=np.zeros(2)) # this e.g. samples a new temperature
s = np.int8(s0)
r = max(r**self.temperature, 1e-35) # TODO: this might hit float32 limit, handle this more gracefully?
# If s0 is a forced-terminal state, the the action that leads
# to it is s0.argmax() which .parents finds, but if it isn't,
# we must indicate that the agent ended the trajectory with
# the stop action
used_stop_action = s.max() < self.horizon - 1
done = True
# Now we work backward from that last transition
traj = []
while s.sum() > 0 or used_stop_action:
parents, actions = self.parent_transitions(s, used_stop_action)
if len(parents) == 0:
import pdb
pdb.set_trace()
# add the transition
traj.append([tf(np.array(i)) for i in (parents, actions, [r], self.obs(s), [done])])
# Then randomly choose a parent state
if not used_stop_action:
i = np.random.randint(0, len(parents))
a = actions[i]
s[a] -= 1
else:
a = self.ndim # the stop action
traj[-1].append(tf(self.obs(s)))
traj[-1].append(tf([a]).long())
if len(traj) == 1:
traj[-1].append(tf(self.cond_obs))
# Values for intermediary trajectory states:
used_stop_action = False
done = False
r = 0
return traj
def make_mlp(ls, act=nn.LeakyReLU, tail=[]):
"""makes an MLP with no top layer activation"""
return nn.Sequential(
*(
sum(
[[nn.Linear(i, o)] + ([act()] if n < len(ls) - 2 else []) for n, (i, o) in enumerate(zip(ls, ls[1:]))],
[],
)
+ tail
)
)
class FlowNet_TBAgent:
def __init__(self, args, envs):
self.model = make_mlp(
[envs[0].num_obs_dim + envs[0].num_cond_dim] + [args.n_hid] * args.n_layers + [args.ndim + 1]
)
self.Z = make_mlp([envs[0].num_cond_dim] + [args.n_hid // 2] * args.n_layers + [1])
self.model.to(args.dev)
self.n_forward_logits = args.ndim + 1
self.envs = envs
self.ndim = args.ndim
def forward_logits(self, x):
return self.model(x)[:, : self.n_forward_logits]
def parameters(self):
return chain(self.model.parameters(), self.Z.parameters())
def sample_many(self, mbsize):
s = tf(np.float32([i.reset()[0] for i in self.envs]))
done = [False] * mbsize
Z = self.Z(torch.tensor([i.cond_obs for i in self.envs]).float())[:, 0]
self._Z = Z.detach().numpy().reshape(-1)
fwd_prob = [[i] for i in Z]
bck_prob = [[] for i in range(mbsize)]
# We will progressively add log P_F(s|), subtract log P_B(|s) and R(s)
while not all(done):
cat = Categorical(logits=self.model(s))
acts = cat.sample()
ridx = torch.tensor((np.random.uniform(0, 1, acts.shape[0]) < 0.01).nonzero()[0])
if len(ridx):
racts = np.random.randint(0, cat.logits.shape[1], len(ridx))
acts[ridx] = torch.tensor(racts)
logp = cat.log_prob(acts)
step = [i.step(a) for i, a in zip([e for d, e in zip(done, self.envs) if not d], acts)]
p_a = [
self.envs[0].parent_transitions(sp_state, a == self.ndim)
for a, (sp, r, done, sp_state) in zip(acts, step)
]
for i, (bi, lp, (_, r, d, sp)) in enumerate(zip(np.nonzero(np.logical_not(done))[0], logp, step)):
fwd_prob[bi].append(logp[i])
bck_prob[bi].append(torch.tensor(np.log(1 / len(p_a[i][0]))).float())
if d:
bck_prob[bi].append(torch.tensor(np.log(r)).float())
c = count(0)
m = {j: next(c) for j in range(mbsize) if not done[j]}
done = [bool(d or step[m[i]][2]) for i, d in enumerate(done)]
s = tf(np.float32([i[0] for i in step if not i[2]]))
numerator = torch.stack([sum(i) for i in fwd_prob])
denominator = torch.stack([sum(i) for i in bck_prob])
log_ratio = numerator - denominator
return log_ratio
def learn_from(self, it, batch):
if isinstance(batch, list):
log_ratio = torch.stack(batch, 0)
else:
log_ratio = batch
loss = log_ratio.pow(2).mean()
return loss, self._Z[0]
def make_opt(params, args):
params = list(params)
if not len(params):
return None
if args.opt == "adam":
opt = torch.optim.Adam(params, args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=1e-4)
elif args.opt == "msgd":
opt = torch.optim.SGD(params, args.learning_rate, momentum=args.momentum)
return opt
def compute_exact_dag_distribution(envs, agent, args):
env = envs[0]
stack = [np.zeros(env.ndim, dtype=np.int32)]
state_prob = defaultdict(lambda: np.zeros(len(envs)))
state_prob[tuple(stack[0])] += 1
end_prob = {}
opened = {}
softmax = nn.Softmax(1)
asd = tqdm(total=env.horizon**env.ndim, disable=not args.progress or 1, leave=False)
while len(stack):
asd.update(1)
s = stack.pop(0)
p = state_prob[tuple(s)]
if s.max() >= env.horizon - 1:
end_prob[tuple(s)] = p
continue
policy = softmax(agent.forward_logits(torch.tensor(np.float32([i.obs(s) for i in envs])))).detach().numpy()
end_prob[tuple(s)] = p * policy[:, -1]
for i in range(env.ndim):
sp = s + 0
sp[i] += 1
state_prob[tuple(sp)] += policy[:, i] * p
if tuple(sp) not in opened:
opened[tuple(sp)] = 1
stack.append(sp)
asd.close()
all_int_states = np.int32(list(itertools.product(*[list(range(env.horizon))] * env.ndim)))
state_mask = (all_int_states == env.horizon - 1).sum(1) <= 1
distribution = np.float32([end_prob[i] for i in map(tuple, all_int_states[state_mask])])
return distribution
def worker(args, agent, events, outq):
stop_event, backprop_barrier = events
torch.set_num_threads(1)
torch.manual_seed(os.getpid())
np.random.seed(os.getpid())
mbs = args.mbsize // args.n_mp_procs
agent.envs = [GridEnv(args.horizon, args.ndim, funcs=agent.envs[0].funcs) for i in range(mbs)]
while not stop_event.is_set():
data = agent.sample_many(mbs)
losses = agent.learn_from(-1, data) # returns (opt loss, *metrics)
losses[0].backward()
outq.put([losses[0].item()] + list(losses[1:]))
backprop_barrier.wait()
def main(args):
args.dev = torch.device(args.device)
args.ndim = 2 # Force this for Branin-Currin
fs = [branin, currin]
envs = [GridEnv(args.horizon, args.ndim, funcs=fs) for i in range(args.mbsize)]
agent = FlowNet_TBAgent(args, envs)
for i in agent.parameters():
i.grad = torch.zeros_like(i)
agent.model.share_memory()
agent.Z.share_memory()
assert args.mbsize % args.n_mp_procs == 0
opt = make_opt(agent.model.parameters(), args)
optZ = make_opt(agent.Z.parameters(), args)
# We want to test our model on a series of conditional configurations
cond_confs = [([a, 1 - a], temp) for a in np.linspace(0, 1, 11) for temp in [1, 2, 4, 8, 16]]
test_envs = [GridEnv(args.horizon, args.ndim, funcs=fs) for i in range(len(cond_confs))]
stop_event, backprop_barrier = mp.Event(), mp.Barrier(args.n_mp_procs + 1)
losses_q = mp.Queue()
processes = [
mp.Process(target=worker, args=(args, agent, (stop_event, backprop_barrier), losses_q))
for i in range(args.n_mp_procs)
]
[i.start() for i in processes]
all_losses = []
distributions = []
progress_bar = tqdm(range(args.n_train_steps + 1), disable=not args.progress)
for t in progress_bar:
while backprop_barrier.n_waiting < args.n_mp_procs:
pass
for i in processes:
all_losses.append(losses_q.get())
if len(all_losses):
progress_bar.set_description_str(
" ".join([f"{np.mean([i[j] for i in all_losses[-100:]]):.5f}" for j in range(len(all_losses[0]))])
)
if t % (args.n_train_steps // args.n_distr_measurements) == 0:
for cfg, env in zip(cond_confs, test_envs):
env.reset(*cfg)
distributions.append(compute_exact_dag_distribution(test_envs, agent, args))
# Workers add to the .grad even if they take the mean of the
# loss, so let's divide here
[i.grad.mul_(1 / args.n_mp_procs) for i in agent.parameters()]
opt.step()
opt.zero_grad()
optZ.step()
optZ.zero_grad()
if t == args.n_train_steps:
stop_event.set()
backprop_barrier.wait() # Trigger barrier passing
[i.join() for i in processes]
for cfg, env in zip(cond_confs, test_envs):
env.reset(*cfg)
final_distribution = compute_exact_dag_distribution(test_envs, agent, args)
results = {
"losses": np.float32(all_losses),
"params": [i.data.to("cpu").numpy() for i in agent.parameters()],
"distributions": distributions,
"final_distribution": final_distribution,
"cond_confs": cond_confs,
"state_info": envs[0].state_info(),
"args": args,
}
if args.save_path is not None:
root = os.path.split(args.save_path)[0]
if len(root):
os.makedirs(root, exist_ok=True)
pickle.dump(results, gzip.open(args.save_path, "wb"))
else:
return results
if __name__ == "__main__":
args = parser.parse_args()
torch.set_num_threads(4)
main(args)