-
Notifications
You must be signed in to change notification settings - Fork 5
/
analysis.ml
320 lines (279 loc) · 10.7 KB
/
analysis.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
open Instr
open Types
type position =
| Arg
| Instr of pc
module Position = struct
type t = position
let compare (x : position) (y : position) =
match x, y with
| Arg, Arg -> 0
| Arg, _ -> -1
| _, Arg -> 1
| Instr x, Instr y -> Pervasives.compare x y
end
module PcSet = Set.Make(Pc)
module PosSet = Set.Make(Position)
let successors_at (instrs : instructions) resolve pc : pc list =
let pc' = pc + 1 in
let instr = instrs.(pc) in
let all_succ =
match instr with
| Guard_hint _ | Decl_var _ | Decl_array _
| Assign _ | Array_assign _
| Drop _ | Read _ | Call _ | Label _
| Comment _ | Assume _ | Print _ | Assert _ ->
let is_last = pc' = Array.length instrs in
if is_last then [] else [pc']
(* those are the instructions which manipulate controlflow: *)
| Stop _ | Return _ -> []
| Goto l -> [resolve (MergeLabel l)]
| Branch (_e, l1, l2) ->
[resolve (BranchLabel l1); resolve (BranchLabel l2)]
in
PcSet.elements (PcSet.of_list all_succ)
let successors (instrs : instructions) : pc list array =
let resolve = Instr.resolver instrs in
let succs_at pc = successors_at instrs resolve pc in
Array.map succs_at (pcs instrs)
let predecessors (instrs : instructions) : pc list array =
let resolve = Instr.resolver instrs in
let preds = Array.map (fun _ -> []) instrs in
let mark_successor pc pc' =
preds.(pc') <- pc :: preds.(pc') in
for pc = 0 to Array.length instrs - 1 do
List.iter (mark_successor pc) (successors_at instrs resolve pc)
done;
assert (Array.length instrs = Array.length preds);
preds
let starts (instrs : instructions) = [0]
let stops (instrs : instructions) =
let succs = successors instrs in
let is_exit pc = succs.(pc) = [] in
let pcs = Array.to_list (pcs instrs) in
List.filter is_exit pcs
let dataflow_analysis (next : pc list array)
(init_state : ('a * pc) list)
(instrs : instructions)
(merge : pc -> 'a -> 'a -> 'a option)
(update : pc -> 'a -> 'a)
: 'a option array =
if Array.length instrs == 0 then [||] else
let program_state = Array.map (fun _ -> None) instrs in
let rec work = function
| [] -> ()
| (in_state, pc) :: rest ->
let merged =
match program_state.(pc) with
| None -> Some in_state
| Some cur_state -> merge pc cur_state in_state
in begin match merged with
| None -> work rest
| Some new_state ->
program_state.(pc) <- merged;
let updated = update pc new_state in
let continue = next.(pc) in
let new_work = List.map (fun pc' -> (updated, pc')) continue in
work (new_work @ rest)
end
in
work init_state;
program_state
exception UnreachableCode of pc
let make_total result =
fun pc ->
match result.(pc) with
| None -> raise (UnreachableCode pc)
| Some res -> res
let forward_analysis init_state instrs merge update =
let successors = successors instrs in
let starts = starts instrs in
assert (starts <> []);
let init = List.map (fun pos -> (init_state, pos)) starts in
make_total (dataflow_analysis successors init instrs merge update)
let backwards_analysis init_state instrs merge update =
if instrs = [||] then fun _ -> assert(false) else begin
let predecessors = predecessors instrs in
let exits = stops instrs @ checkpoints instrs in
assert (exits <> []);
let init = List.map (fun pos -> (init_state, pos)) exits in
make_total (dataflow_analysis predecessors init instrs merge update)
end
let find (next : pc list array)
(start : pc)
(instrs : instructions)
(predicate : pc -> bool) : pc =
let rec work todo seen =
match todo with
| [] -> raise Not_found
| pc :: rest when PcSet.mem pc seen ->
work rest seen (* already checked *)
| pc :: rest when predicate pc ->
pc (* fits predicate *)
| pc :: rest ->
let seen, todo = PcSet.add pc seen, next.(pc) @ todo in
work todo seen (* schedule next *)
in
work [start] PcSet.empty
let find_first (instrs : instructions)
(predicate : pc -> bool) : pc =
let succ = successors instrs in
find succ 0 instrs predicate
(* Use - Def style analysis *)
(* [Analysis result] Map: variable -> pc set
*
* Is used to represent the eg. the set of instructions
* defining a certain variable *)
module VariableMap = struct
include Map.Make(Variable)
module KeySet = Set.Make(Variable)
(* merge is defined as the union of their equally named sets *)
let union =
let merge_one _ a b : PosSet.t option =
match a, b with
| None, None -> None
| Some a, None -> Some a
| None, Some b -> Some b
| Some a, Some b -> Some (PosSet.union a b) in
merge merge_one
let singleton var loc =
add var (PosSet.singleton loc) empty
let initial vars =
List.fold_left (fun s x -> union s (singleton x Arg)) empty vars
let equal =
let is_equal a b = PosSet.equal a b in
equal is_equal
let at var this =
match find var this with
| v -> v
| exception Not_found -> PosSet.empty
end
exception DuplicateFormalParameter
let as_var_list (formals : formal_parameter list) =
let to_var (Param x) = x in
let formals' = List.map to_var formals in
if (List.length formals) <> (VarSet.cardinal (VarSet.of_list formals')) then
raise DuplicateFormalParameter;
formals'
let as_var_set (formals : formal_parameter list) =
VarSet.of_list (as_var_list formals)
let as_var_map formals =
VariableMap.initial formals
let as_analysis_input (func:afunction) (version:version) =
{ formals = as_var_list func.formals; instrs = version.instrs }
(* returns a 'pc -> pc set' computing reaching definitions *)
let reaching {formals; instrs} : pc -> PosSet.t =
let merge _pc cur_defs in_defs =
let merged = VariableMap.union cur_defs in_defs in
if VariableMap.equal cur_defs merged then None else Some merged
in
let update pc defs =
let instr = instrs.(pc) in
(* add or override defined vars in one go*)
let kill = defined_vars instr in
let loc = PosSet.singleton (Instr pc) in
let replace var acc = VariableMap.add var loc acc in
VarSet.fold replace kill defs
in
let res = forward_analysis (as_var_map formals) instrs merge update in
fun pc ->
let instr = instrs.(pc) in
let used = VarSet.elements (used_vars instr) in
let definitions_of var = VariableMap.find var (res pc) in
let all_definitions = List.map definitions_of used in
List.fold_left PosSet.union PosSet.empty all_definitions
let scope_analysis (introduction : instruction -> variable list)
(elimination : instruction -> variable list)
({formals; instrs} : analysis_input) =
let merge _pc cur_scope in_scope =
let merged = VariableMap.union cur_scope in_scope in
if VariableMap.equal cur_scope merged then None else Some merged
in
let update pc cur_scope =
let instr = instrs.(pc) in
let to_remove = introduction instr in
let cur_scope = List.fold_right VariableMap.remove to_remove cur_scope in
let to_add = elimination instr in
let entry var = VariableMap.singleton var (Instr pc) in
let merge acc var = VariableMap.union (entry var) acc in
List.fold_left merge cur_scope to_add
in
backwards_analysis VariableMap.empty instrs merge update
let liveness_analysis ({instrs} as inp : analysis_input) =
let introduction instr = VarSet.elements (defined_vars instr) in
let elimination instr = VarSet.elements (used_vars instr) in
scope_analysis introduction elimination inp
let lifetime_analysis ({instrs} as inp : analysis_input) =
let introduction instr = VarSet.elements (declared_vars instr) in
let elimination instr = VarSet.elements (required_vars instr) in
scope_analysis introduction elimination inp
(* returns a 'pc -> variable set' computing live vars at a certain pc *)
let live (inp : analysis_input) : pc -> variable list =
let res = liveness_analysis inp in
fun pc ->
let collect_key (key, value) = key in
let live_vars = List.map collect_key (VariableMap.bindings (res pc)) in
live_vars
let as_pc_set pos_set =
let pos = PosSet.elements pos_set in
let pos = List.map (fun p -> match p with
| Arg -> assert (false)
| Instr p -> p) pos in
PcSet.of_list pos
(* returns a 'pc -> pc set' computing uses of a definition *)
let uses ({instrs} as inp : analysis_input) : pc -> PcSet.t =
let res = liveness_analysis inp in
fun pc ->
let add_uses x used = PosSet.union used (VariableMap.at x (res pc)) in
let pos = VarSet.fold add_uses (defined_vars instrs.(pc)) PosSet.empty in
(* formal parameter cannot be an use *)
as_pc_set pos
let dominates ({instrs} : analysis_input) : pc -> pc -> bool =
let merge _pc cur incom =
let merged = PosSet.inter cur incom in
if PosSet.equal merged cur then None else Some merged
in
let update pc cur =
PosSet.add (Instr pc) cur
in
let dominators = forward_analysis PosSet.empty instrs merge update in
fun pc pc' ->
let doms = dominators pc' in
PosSet.mem (Instr pc) doms
(* returns a 'pc -> pc set' computing the set of instructions depending on a declaration *)
let required ({instrs} as inp : analysis_input) : pc -> PcSet.t =
let res = lifetime_analysis inp in
fun pc ->
let add_uses x used = PosSet.union used (VariableMap.at x (res pc)) in
let pos = VarSet.fold add_uses (declared_vars instrs.(pc)) PosSet.empty in
(* formal parameter cannot be a require *)
as_pc_set pos
(* returns a 'pc -> variable set' computing variables which need to be in scope
* Note: they might not be! *)
let required_vars ({instrs} as inp : analysis_input) : pc -> variable list =
let res = lifetime_analysis inp in
fun pc -> List.map fst (VariableMap.bindings (res pc))
let aliased ({formals; instrs} : analysis_input) : pc -> VarSet.t =
let ref_param params x = x :: params in
let mut_formals = List.fold_left ref_param [] formals in
fun _ -> VarSet.of_list mut_formals
module Expression = struct
type t = expression
let compare (x : expression) (y : expression) =
Pervasives.compare x y
end
module ExpressionSet = Set.Make(Expression)
let valid_assumptions {instrs} : pc -> ExpressionSet.t =
let merge _pc cur incom =
let merged = ExpressionSet.inter cur incom in
if ExpressionSet.equal merged cur then None else Some merged
in
let update pc cur =
match[@warning "-4"] instrs.(pc) with
| Assume {guards} ->
List.fold_right ExpressionSet.add guards cur
| _ ->
ExpressionSet.filter (fun exp ->
Instr.independent instrs.(pc) exp) cur
in
forward_analysis ExpressionSet.empty instrs merge update