-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathlearn.cc
638 lines (570 loc) · 17.1 KB
/
learn.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <sys/time.h>
#include <errno.h>
#include <fstream>
#include <iostream>
using namespace std;
/*
* Optimize LSVM objective function via gradient descent.
*
* We use an adaptive cache mechanism. After a negative example
* scores beyond the margin multiple times it is removed from the
* training set for a fixed number of iterations.
*/
// Data File Format
// EXAMPLE*
//
// EXAMPLE:
// long label ints
// blocks int
// dim int
// DATA{blocks}
//
// DATA:
// block label float
// block data floats
//
// Internal Binary Format
// len int (byte length of EXAMPLE)
// EXAMPLE <see above>
// unique flag byte
// number of iterations
#define ITER 10e6
// minimum # of iterations before termination
#define MIN_ITER 5e6
// convergence threshold
#define DELTA_STOP 0.9995
// number of times in a row the convergence threshold
// must be reached before stopping
#define STOP_COUNT 5
// small cache parameters
#define INCACHE 25
#define MINWAIT (INCACHE+25)
#define REGFREQ 20
// error checking
#define check(e) \
(e ? (void)0 : (printf("%s:%u error: %s\n%s\n", __FILE__, __LINE__, #e, strerror(errno)), exit(1)))
// number of non-zero blocks in example ex
#define NUM_NONZERO(ex) (((int *)ex)[labelsize+1])
// float pointer to data segment of example ex
#define EX_DATA(ex) ((float *)(ex + sizeof(int)*(labelsize+3)))
// class label (+1 or -1) for the example
#define LABEL(ex) (((int *)ex)[1])
// block label (converted to 0-based index)
#define BLOCK_IDX(data) (((int)data[0])-1)
// set to 0 to use max-component L2 regularization
// set to 1 to use full model L2 regularization
#define FULL_L2 0
int labelsize;
int dim;
// comparison function for sorting examples
int comp(const void *a, const void *b) {
// sort by extended label first, and whole example second...
int c = memcmp(*((char **)a) + sizeof(int),
*((char **)b) + sizeof(int),
labelsize*sizeof(int));
if (c)
return c;
// labels are the same
int alen = **((int **)a);
int blen = **((int **)b);
if (alen == blen)
return memcmp(*((char **)a) + sizeof(int),
*((char **)b) + sizeof(int),
alen);
return ((alen < blen) ? -1 : 1);
}
// a collapsed example is a sequence of examples
struct collapsed {
char **seq;
int num;
};
// the two node types in an AND/OR tree
enum node_type { OR, AND };
// set of collapsed examples
struct data {
collapsed *x;
int num;
int numblocks;
int numcomponents;
int *blocksizes;
int *componentsizes;
int **componentblocks;
float *regmult;
float *learnmult;
};
// seed the random number generator with an arbitrary (fixed) value
void seed_rand() {
srand48(3);
}
static inline double min(double x, double y) { return (x <= y ? x : y); }
static inline double max(double x, double y) { return (x <= y ? y : x); }
// compute the score of an example
static inline double ex_score(const char *ex, data X, double **w) {
double val = 0.0;
float *data = EX_DATA(ex);
int blocks = NUM_NONZERO(ex);
for (int j = 0; j < blocks; j++) {
int b = BLOCK_IDX(data);
data++;
double blockval = 0;
for (int k = 0; k < X.blocksizes[b]; k++)
blockval += w[b][k] * data[k];
data += X.blocksizes[b];
val += blockval;
}
return val;
}
// return the value of the object function.
// out[0] : loss on negative examples
// out[1] : loss on positive examples
// out[2] : regularization term's value
double compute_loss(double out[3], double C, double J, data X, double **w) {
double loss = 0.0;
#if FULL_L2
// compute ||w||^2
for (int j = 0; j < X.numblocks; j++) {
for (int k = 0; k < X.blocksizes[j]; k++) {
loss += w[j][k] * w[j][k] * X.regmult[j];
}
}
#else
// compute max norm^2 component
for (int c = 0; c < X.numcomponents; c++) {
double val = 0;
for (int i = 0; i < X.componentsizes[c]; i++) {
int b = X.componentblocks[c][i];
double blockval = 0;
for (int k = 0; k < X.blocksizes[b]; k++)
blockval += w[b][k] * w[b][k] * X.regmult[b];
val += blockval;
}
if (val > loss)
loss = val;
}
#endif
loss *= 0.5;
// record the regularization term
out[2] = loss;
// compute loss from the training data
for (int l = 0; l <= 1; l++) {
// which label subset to look at: -1 or 1
int subset = (l*2)-1;
double subsetloss = 0.0;
for (int i = 0; i < X.num; i++) {
collapsed x = X.x[i];
// only consider examples in the target subset
char *ptr = x.seq[0];
if (LABEL(ptr) != subset)
continue;
// compute max over latent placements
int M = -1;
double V = -INFINITY;
for (int m = 0; m < x.num; m++) {
double val = ex_score(x.seq[m], X, w);
if (val > V) {
M = m;
V = val;
}
}
// compute loss on max
ptr = x.seq[M];
int label = LABEL(ptr);
double mult = C * (label == 1 ? J : 1);
subsetloss += mult * max(0.0, 1.0-label*V);
}
loss += subsetloss;
out[l] = subsetloss;
}
return loss;
}
// gradient descent
void gd(double C, double J, data X, double **w, double **lb, char *logdir, char *logtag) {
ofstream logfile;
string filepath = string(logdir) + "/learnlog/" + string(logtag) + ".log";
logfile.open(filepath.c_str());
logfile.precision(14);
logfile.setf(ios::fixed, ios::floatfield);
int num = X.num;
// state for random permutations
int *perm = (int *)malloc(sizeof(int)*X.num);
check(perm != NULL);
// state for small cache
int *W = (int *)malloc(sizeof(int)*num);
check(W != NULL);
for (int j = 0; j < num; j++)
W[j] = INCACHE;
double prev_loss = 1E9;
bool converged = false;
int stop_count = 0;
int t = 0;
while (t < ITER && !converged) {
// pick random permutation
for (int i = 0; i < num; i++)
perm[i] = i;
for (int swapi = 0; swapi < num; swapi++) {
int swapj = (int)(drand48()*(num-swapi)) + swapi;
int tmp = perm[swapi];
perm[swapi] = perm[swapj];
perm[swapj] = tmp;
}
// count number of examples in the small cache
int cnum = 0;
for (int i = 0; i < num; i++)
if (W[i] <= INCACHE)
cnum++;
int numupdated = 0;
for (int swapi = 0; swapi < num; swapi++) {
// select example
int i = perm[swapi];
// skip if example is not in small cache
if (W[i] > INCACHE) {
W[i]--;
continue;
}
collapsed x = X.x[i];
// learning rate
double T = min(ITER/2.0, t + 10000.0);
double rateX = cnum * C / T;
t++;
if (t % 100000 == 0) {
double info[3];
double loss = compute_loss(info, C, J, X, w);
double delta = 1.0 - (fabs(prev_loss - loss) / loss);
logfile << t << "\t" << loss << "\t" << delta << endl;
if (delta >= DELTA_STOP && t >= MIN_ITER) {
stop_count++;
if (stop_count > STOP_COUNT)
converged = true;
} else if (stop_count > 0) {
stop_count = 0;
}
prev_loss = loss;
printf("\r%7.2f%% of max # iterations "
"(delta = %.5f; stop count = %d)",
100*double(t)/double(ITER), max(delta, 0.0),
STOP_COUNT - stop_count + 1);
fflush(stdout);
if (converged)
break;
}
// compute max over latent placements
int M = -1;
double V = -INFINITY;
for (int m = 0; m < x.num; m++) {
double val = ex_score(x.seq[m], X, w);
if (val > V) {
M = m;
V = val;
}
}
char *ptr = x.seq[M];
int label = LABEL(ptr);
if (label * V < 1.0) {
numupdated++;
W[i] = 0;
float *data = EX_DATA(ptr);
int blocks = NUM_NONZERO(ptr);
for (int j = 0; j < blocks; j++) {
int b = BLOCK_IDX(data);
double mult = (label > 0 ? J : -1) * rateX * X.learnmult[b];
data++;
for (int k = 0; k < X.blocksizes[b]; k++)
w[b][k] += mult * data[k];
data += X.blocksizes[b];
}
} else {
if (W[i] == INCACHE)
W[i] = MINWAIT + (int)(drand48()*50);
else
W[i]++;
}
// periodically regularize the model
if (t % REGFREQ == 0) {
// apply lowerbounds
for (int j = 0; j < X.numblocks; j++)
for (int k = 0; k < X.blocksizes[j]; k++)
w[j][k] = max(w[j][k], lb[j][k]);
double rateR = 1.0 / T;
#if FULL_L2
// update model
for (int j = 0; j < X.numblocks; j++) {
double mult = rateR * X.regmult[j] * X.learnmult[j];
mult = pow((1-mult), REGFREQ);
for (int k = 0; k < X.blocksizes[j]; k++) {
w[j][k] = mult * w[j][k];
}
}
#else
// assume simple mixture model
int maxc = 0;
double bestval = 0;
for (int c = 0; c < X.numcomponents; c++) {
double val = 0;
for (int i = 0; i < X.componentsizes[c]; i++) {
int b = X.componentblocks[c][i];
double blockval = 0;
for (int k = 0; k < X.blocksizes[b]; k++)
blockval += w[b][k] * w[b][k] * X.regmult[b];
val += blockval;
}
if (val > bestval) {
maxc = c;
bestval = val;
}
}
for (int i = 0; i < X.componentsizes[maxc]; i++) {
int b = X.componentblocks[maxc][i];
double mult = rateR * X.regmult[b] * X.learnmult[b];
mult = pow((1-mult), REGFREQ);
for (int k = 0; k < X.blocksizes[b]; k++)
w[b][k] = mult * w[b][k];
}
#endif
}
}
}
if (converged)
printf("\nTermination criteria reached after %d iterations.\n", t);
else
printf("\nMax iteration count reached.\n", t);
free(perm);
free(W);
logfile.close();
}
// score examples
double *score(data X, char **examples, int num, double **w) {
double *s = (double *)malloc(sizeof(double)*num);
check(s != NULL);
for (int i = 0; i < num; i++)
s[i] = ex_score(examples[i], X, w);
return s;
}
// merge examples with identical labels
void collapse(data *X, char **examples, int num) {
collapsed *x = (collapsed *)malloc(sizeof(collapsed)*num);
check(x != NULL);
int i = 0;
x[0].seq = examples;
x[0].num = 1;
for (int j = 1; j < num; j++) {
if (!memcmp(x[i].seq[0]+sizeof(int), examples[j]+sizeof(int),
labelsize*sizeof(int))) {
x[i].num++;
} else {
i++;
x[i].seq = &(examples[j]);
x[i].num = 1;
}
}
X->x = x;
X->num = i+1;
}
int main(int argc, char **argv) {
seed_rand();
int count;
data X;
// command line arguments
check(argc == 12);
double C = atof(argv[1]);
double J = atof(argv[2]);
char *hdrfile = argv[3];
char *datfile = argv[4];
char *modfile = argv[5];
char *inffile = argv[6];
char *lobfile = argv[7];
char *cmpfile = argv[8];
char *objfile = argv[9];
char *logdir = argv[10];
char *logtag = argv[11];
// read header file
FILE *f = fopen(hdrfile, "rb");
check(f != NULL);
int header[3];
count = fread(header, sizeof(int), 3, f);
check(count == 3);
int num = header[0];
labelsize = header[1];
X.numblocks = header[2];
X.blocksizes = (int *)malloc(X.numblocks*sizeof(int));
count = fread(X.blocksizes, sizeof(int), X.numblocks, f);
check(count == X.numblocks);
X.regmult = (float *)malloc(sizeof(float)*X.numblocks);
check(X.regmult != NULL);
count = fread(X.regmult, sizeof(float), X.numblocks, f);
check(count == X.numblocks);
X.learnmult = (float *)malloc(sizeof(float)*X.numblocks);
check(X.learnmult != NULL);
count = fread(X.learnmult, sizeof(float), X.numblocks, f);
check(count == X.numblocks);
check(num != 0);
fclose(f);
printf("%d examples with label size %d and %d blocks\n",
num, labelsize, X.numblocks);
printf("block size, regularization multiplier, learning rate multiplier\n");
dim = 0;
for (int i = 0; i < X.numblocks; i++) {
dim += X.blocksizes[i];
printf("%d, %.2f, %.2f\n", X.blocksizes[i], X.regmult[i], X.learnmult[i]);
}
// read component info file
// format: #components {#blocks blk1 ... blk#blocks}^#components
f = fopen(cmpfile, "rb");
count = fread(&X.numcomponents, sizeof(int), 1, f);
check(count == 1);
printf("the model has %d components\n", X.numcomponents);
X.componentblocks = (int **)malloc(X.numcomponents*sizeof(int *));
X.componentsizes = (int *)malloc(X.numcomponents*sizeof(int));
for (int i = 0; i < X.numcomponents; i++) {
count = fread(&X.componentsizes[i], sizeof(int), 1, f);
check(count == 1);
printf("component %d has %d blocks:", i, X.componentsizes[i]);
X.componentblocks[i] = (int *)malloc(X.componentsizes[i]*sizeof(int));
count = fread(X.componentblocks[i], sizeof(int), X.componentsizes[i], f);
check(count == X.componentsizes[i]);
for (int j = 0; j < X.componentsizes[i]; j++)
printf(" %d", X.componentblocks[i][j]);
printf("\n");
}
fclose(f);
// read examples
f = fopen(datfile, "rb");
check(f != NULL);
printf("Reading examples\n");
char **examples = (char **)malloc(num*sizeof(char *));
check(examples != NULL);
for (int i = 0; i < num; i++) {
// we use an extra byte in the end of each example to mark unique
// we use an extra int at the start of each example to store the
// example's byte length (excluding unique flag and this int)
int buf[labelsize+2];
count = fread(buf, sizeof(int), labelsize+2, f);
check(count == labelsize+2);
// byte length of an example's data segment
int len = sizeof(int)*(labelsize+2) + sizeof(float)*buf[labelsize+1];
// memory for data, an initial integer, and a final byte
examples[i] = (char *)malloc(sizeof(int)+len+1);
check(examples[i] != NULL);
// set data segment's byte length
((int *)examples[i])[0] = len;
// set the unique flag to zero
examples[i][sizeof(int)+len] = 0;
// copy label data into example
for (int j = 0; j < labelsize+2; j++)
((int *)examples[i])[j+1] = buf[j];
// read the rest of the data segment into the example
count = fread(examples[i]+sizeof(int)*(labelsize+3), 1,
len-sizeof(int)*(labelsize+2), f);
check(count == len-sizeof(int)*(labelsize+2));
}
fclose(f);
printf("done\n");
// sort
printf("Sorting examples\n");
char **sorted = (char **)malloc(num*sizeof(char *));
check(sorted != NULL);
memcpy(sorted, examples, num*sizeof(char *));
qsort(sorted, num, sizeof(char *), comp);
printf("done\n");
// find unique examples
int i = 0;
int len = *((int *)sorted[0]);
sorted[0][sizeof(int)+len] = 1;
for (int j = 1; j < num; j++) {
int alen = *((int *)sorted[i]);
int blen = *((int *)sorted[j]);
if (alen != blen ||
memcmp(sorted[i] + sizeof(int), sorted[j] + sizeof(int), alen)) {
i++;
sorted[i] = sorted[j];
sorted[i][sizeof(int)+blen] = 1;
}
}
int num_unique = i+1;
printf("%d unique examples\n", num_unique);
// collapse examples
collapse(&X, sorted, num_unique);
printf("%d collapsed examples\n", X.num);
// initial model
double **w = (double **)malloc(sizeof(double *)*X.numblocks);
check(w != NULL);
f = fopen(modfile, "rb");
for (int i = 0; i < X.numblocks; i++) {
w[i] = (double *)malloc(sizeof(double)*X.blocksizes[i]);
check(w[i] != NULL);
count = fread(w[i], sizeof(double), X.blocksizes[i], f);
check(count == X.blocksizes[i]);
}
fclose(f);
// lower bounds
double **lb = (double **)malloc(sizeof(double *)*X.numblocks);
check(lb != NULL);
f = fopen(lobfile, "rb");
for (int i = 0; i < X.numblocks; i++) {
lb[i] = (double *)malloc(sizeof(double)*X.blocksizes[i]);
check(lb[i] != NULL);
count = fread(lb[i], sizeof(double), X.blocksizes[i], f);
check(count == X.blocksizes[i]);
}
fclose(f);
// train
printf("Training\n");
gd(C, J, X, w, lb, logdir, logtag);
printf("done\n");
// save model
printf("Saving model\n");
f = fopen(modfile, "wb");
check(f != NULL);
for (int i = 0; i < X.numblocks; i++) {
count = fwrite(w[i], sizeof(double), X.blocksizes[i], f);
check(count == X.blocksizes[i]);
}
fclose(f);
// score examples
printf("Scoring\n");
double *s = score(X, examples, num, w);
// Write info file
printf("Writing info file\n");
f = fopen(inffile, "w");
check(f != NULL);
for (int i = 0; i < num; i++) {
int len = ((int *)examples[i])[0];
// label, score, unique flag
count = fprintf(f, "%d\t%f\t%d\n", ((int *)examples[i])[1], s[i],
(int)examples[i][sizeof(int)+len]);
check(count > 0);
}
fclose(f);
// compute loss and write it to a file
double lossinfo[3];
compute_loss(lossinfo, C, J, X, w);
printf("Writing objective function info file\n");
f = fopen(objfile, "w");
count = fprintf(f, "%f\t%f\t%f", lossinfo[0], lossinfo[1], lossinfo[2]);
check(count > 0);
fclose(f);
printf("Freeing memory\n");
for (int i = 0; i < X.numblocks; i++) {
free(w[i]);
free(lb[i]);
}
free(w);
free(lb);
free(s);
for (int i = 0; i < num; i++)
free(examples[i]);
free(examples);
free(sorted);
free(X.x);
free(X.blocksizes);
free(X.regmult);
free(X.learnmult);
for (int i = 0; i < X.numcomponents; i++)
free(X.componentblocks[i]);
free(X.componentblocks);
free(X.componentsizes);
return 0;
}