-
Notifications
You must be signed in to change notification settings - Fork 979
/
rcnn_train.m
379 lines (328 loc) · 13.9 KB
/
rcnn_train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
function [rcnn_model, rcnn_k_fold_model] = ...
rcnn_train(imdb, varargin)
% [rcnn_model, rcnn_k_fold_model] = rcnn_train(imdb, varargin)
% Trains an R-CNN detector for all classes in the imdb.
%
% Keys that can be passed in:
%
% svm_C SVM regularization parameter
% bias_mult Bias feature value (for liblinear)
% pos_loss_weight Cost factor on hinge loss for positives
% layer Feature layer to use (either 5, 6 or 7)
% k_folds Train on folds of the imdb
% checkpoint Save the rcnn_model every checkpoint images
% crop_mode Crop mode (either 'warp' or 'square')
% crop_padding Amount of padding in crop
% net_file Path to the Caffe CNN to use
% cache_name Path to the precomputed feature cache
% AUTORIGHTS
% ---------------------------------------------------------
% Copyright (c) 2014, Ross Girshick
%
% This file is part of the R-CNN code and is available
% under the terms of the Simplified BSD License provided in
% LICENSE. Please retain this notice and LICENSE if you use
% this file (or any portion of it) in your project.
% ---------------------------------------------------------
% TODO:
% - allow training just a subset of classes
ip = inputParser;
ip.addRequired('imdb', @isstruct);
ip.addParamValue('svm_C', 10^-3, @isscalar);
ip.addParamValue('bias_mult', 10, @isscalar);
ip.addParamValue('pos_loss_weight', 2, @isscalar);
ip.addParamValue('layer', 7, @isscalar);
ip.addParamValue('k_folds', 2, @isscalar);
ip.addParamValue('checkpoint', 0, @isscalar);
ip.addParamValue('crop_mode', 'warp', @isstr);
ip.addParamValue('crop_padding', 16, @isscalar);
ip.addParamValue('net_file', ...
'./data/caffe_nets/finetune_voc_2007_trainval_iter_70k', ...
@isstr);
ip.addParamValue('cache_name', ...
'v1_finetune_voc_2007_trainval_iter_70000', @isstr);
ip.parse(imdb, varargin{:});
opts = ip.Results;
opts.net_def_file = './model-defs/rcnn_batch_256_output_fc7.prototxt';
conf = rcnn_config('sub_dir', imdb.name);
% Record a log of the training and test procedure
timestamp = datestr(datevec(now()), 'dd.mmm.yyyy:HH.MM.SS');
diary_file = [conf.cache_dir 'rcnn_train_' timestamp '.txt'];
diary(diary_file);
fprintf('Logging output in %s\n', diary_file);
fprintf('\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n');
fprintf('Training options:\n');
disp(opts);
fprintf('~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n');
% ------------------------------------------------------------------------
% Create a new rcnn model
rcnn_model = rcnn_create_model(opts.net_def_file, opts.net_file, opts.cache_name);
rcnn_model = rcnn_load_model(rcnn_model, conf.use_gpu);
rcnn_model.detectors.crop_mode = opts.crop_mode;
rcnn_model.detectors.crop_padding = opts.crop_padding;
rcnn_model.classes = imdb.classes;
% ------------------------------------------------------------------------
% ------------------------------------------------------------------------
% Get the average norm of the features
opts.feat_norm_mean = rcnn_feature_stats(imdb, opts.layer, rcnn_model);
fprintf('average norm = %.3f\n', opts.feat_norm_mean);
rcnn_model.training_opts = opts;
% ------------------------------------------------------------------------
% ------------------------------------------------------------------------
% Get all positive examples
% We cache only the pool5 features and convert them on-the-fly to
% fc6 or fc7 as required
save_file = sprintf('./feat_cache/%s/%s/gt_pos_layer_5_cache.mat', ...
rcnn_model.cache_name, imdb.name);
try
load(save_file);
fprintf('Loaded saved positives from ground truth boxes\n');
catch
[X_pos, keys_pos] = get_positive_pool5_features(imdb, opts);
save(save_file, 'X_pos', 'keys_pos', '-v7.3');
end
% Init training caches
caches = {};
for i = imdb.class_ids
fprintf('%14s has %6d positive instances\n', ...
imdb.classes{i}, size(X_pos{i},1));
X_pos{i} = rcnn_pool5_to_fcX(X_pos{i}, opts.layer, rcnn_model);
X_pos{i} = rcnn_scale_features(X_pos{i}, opts.feat_norm_mean);
caches{i} = init_cache(X_pos{i}, keys_pos{i});
end
% ------------------------------------------------------------------------
% ------------------------------------------------------------------------
% Train with hard negative mining
first_time = true;
% one pass over the data is enough
max_hard_epochs = 1;
for hard_epoch = 1:max_hard_epochs
for i = 1:length(imdb.image_ids)
fprintf('%s: hard neg epoch: %d/%d image: %d/%d\n', ...
procid(), hard_epoch, max_hard_epochs, i, length(imdb.image_ids));
% Get hard negatives for all classes at once (avoids loading feature cache
% more than once)
[X, keys] = sample_negative_features(first_time, rcnn_model, caches, ...
imdb, i);
% Add sampled negatives to each classes training cache, removing
% duplicates
for j = imdb.class_ids
if ~isempty(keys{j})
if ~isempty(caches{j}.keys_neg)
[~, ~, dups] = intersect(caches{j}.keys_neg, keys{j}, 'rows');
assert(isempty(dups));
end
caches{j}.X_neg = cat(1, caches{j}.X_neg, X{j});
caches{j}.keys_neg = cat(1, caches{j}.keys_neg, keys{j});
caches{j}.num_added = caches{j}.num_added + size(keys{j},1);
end
% Update model if
% - first time seeing negatives
% - more than retrain_limit negatives have been added
% - its the final image of the final epoch
is_last_time = (hard_epoch == max_hard_epochs && i == length(imdb.image_ids));
hit_retrain_limit = (caches{j}.num_added > caches{j}.retrain_limit);
if (first_time || hit_retrain_limit || is_last_time) && ...
~isempty(caches{j}.X_neg)
fprintf('>>> Updating %s detector <<<\n', imdb.classes{j});
fprintf('Cache holds %d pos examples %d neg examples\n', ...
size(caches{j}.X_pos,1), size(caches{j}.X_neg,1));
[new_w, new_b] = update_model(caches{j}, opts);
rcnn_model.detectors.W(:, j) = new_w;
rcnn_model.detectors.B(j) = new_b;
caches{j}.num_added = 0;
z_pos = caches{j}.X_pos * new_w + new_b;
z_neg = caches{j}.X_neg * new_w + new_b;
caches{j}.pos_loss(end+1) = opts.svm_C * opts.pos_loss_weight * ...
sum(max(0, 1 - z_pos));
caches{j}.neg_loss(end+1) = opts.svm_C * sum(max(0, 1 + z_neg));
caches{j}.reg_loss(end+1) = 0.5 * new_w' * new_w + ...
0.5 * (new_b / opts.bias_mult)^2;
caches{j}.tot_loss(end+1) = caches{j}.pos_loss(end) + ...
caches{j}.neg_loss(end) + ...
caches{j}.reg_loss(end);
for t = 1:length(caches{j}.tot_loss)
fprintf(' %2d: obj val: %.3f = %.3f (pos) + %.3f (neg) + %.3f (reg)\n', ...
t, caches{j}.tot_loss(t), caches{j}.pos_loss(t), ...
caches{j}.neg_loss(t), caches{j}.reg_loss(t));
end
% store negative support vectors for visualizing later
SVs_neg = find(z_neg > -1 - eps);
rcnn_model.SVs.keys_neg{j} = caches{j}.keys_neg(SVs_neg, :);
rcnn_model.SVs.scores_neg{j} = z_neg(SVs_neg);
% evict easy examples
easy = find(z_neg < caches{j}.evict_thresh);
caches{j}.X_neg(easy,:) = [];
caches{j}.keys_neg(easy,:) = [];
fprintf(' Pruning easy negatives\n');
fprintf(' Cache holds %d pos examples %d neg examples\n', ...
size(caches{j}.X_pos,1), size(caches{j}.X_neg,1));
fprintf(' %d pos support vectors\n', numel(find(z_pos < 1 + eps)));
fprintf(' %d neg support vectors\n', numel(find(z_neg > -1 - eps)));
end
end
first_time = false;
if opts.checkpoint > 0 && mod(i, opts.checkpoint) == 0
save([conf.cache_dir 'rcnn_model'], 'rcnn_model');
end
end
end
% save the final rcnn_model
save([conf.cache_dir 'rcnn_model'], 'rcnn_model');
% ------------------------------------------------------------------------
% ------------------------------------------------------------------------
if opts.k_folds > 0
rcnn_k_fold_model = rcnn_model;
[W, B, folds] = update_model_k_fold(rcnn_model, caches, imdb);
rcnn_k_fold_model.folds = folds;
for f = 1:length(folds)
rcnn_k_fold_model.detectors(f).W = W{f};
rcnn_k_fold_model.detectors(f).B = B{f};
end
save([conf.cache_dir 'rcnn_k_fold_model'], 'rcnn_k_fold_model');
else
rcnn_k_fold_model = [];
end
% ------------------------------------------------------------------------
% ------------------------------------------------------------------------
function [X_neg, keys] = sample_negative_features(first_time, rcnn_model, ...
caches, imdb, ind)
% ------------------------------------------------------------------------
opts = rcnn_model.training_opts;
d = rcnn_load_cached_pool5_features(opts.cache_name, ...
imdb.name, imdb.image_ids{ind});
class_ids = imdb.class_ids;
if isempty(d.feat)
X_neg = cell(max(class_ids), 1);
keys = cell(max(class_ids), 1);
return;
end
d.feat = rcnn_pool5_to_fcX(d.feat, opts.layer, rcnn_model);
d.feat = rcnn_scale_features(d.feat, opts.feat_norm_mean);
neg_ovr_thresh = 0.3;
if first_time
for cls_id = class_ids
I = find(d.overlap(:, cls_id) < neg_ovr_thresh);
X_neg{cls_id} = d.feat(I,:);
keys{cls_id} = [ind*ones(length(I),1) I];
end
else
zs = bsxfun(@plus, d.feat*rcnn_model.detectors.W, rcnn_model.detectors.B);
for cls_id = class_ids
z = zs(:, cls_id);
I = find((z > caches{cls_id}.hard_thresh) & ...
(d.overlap(:, cls_id) < neg_ovr_thresh));
% Avoid adding duplicate features
keys_ = [ind*ones(length(I),1) I];
if ~isempty(caches{cls_id}.keys_neg) && ~isempty(keys_)
[~, ~, dups] = intersect(caches{cls_id}.keys_neg, keys_, 'rows');
keep = setdiff(1:size(keys_,1), dups);
I = I(keep);
end
% Unique hard negatives
X_neg{cls_id} = d.feat(I,:);
keys{cls_id} = [ind*ones(length(I),1) I];
end
end
% ------------------------------------------------------------------------
function [w, b] = update_model(cache, opts, pos_inds, neg_inds)
% ------------------------------------------------------------------------
solver = 'liblinear';
liblinear_type = 3; % l2 regularized l1 hinge loss
%liblinear_type = 5; % l1 regularized l2 hinge loss
if ~exist('pos_inds', 'var') || isempty(pos_inds)
num_pos = size(cache.X_pos, 1);
pos_inds = 1:num_pos;
else
num_pos = length(pos_inds);
fprintf('[subset mode] using %d out of %d total positives\n', ...
num_pos, size(cache.X_pos,1));
end
if ~exist('neg_inds', 'var') || isempty(neg_inds)
num_neg = size(cache.X_neg, 1);
neg_inds = 1:num_neg;
else
num_neg = length(neg_inds);
fprintf('[subset mode] using %d out of %d total negatives\n', ...
num_neg, size(cache.X_neg,1));
end
switch solver
case 'liblinear'
ll_opts = sprintf('-w1 %.5f -c %.5f -s %d -B %.5f', ...
opts.pos_loss_weight, opts.svm_C, ...
liblinear_type, opts.bias_mult);
fprintf('liblinear opts: %s\n', ll_opts);
X = sparse(size(cache.X_pos,2), num_pos+num_neg);
X(:,1:num_pos) = cache.X_pos(pos_inds,:)';
X(:,num_pos+1:end) = cache.X_neg(neg_inds,:)';
y = cat(1, ones(num_pos,1), -ones(num_neg,1));
llm = liblinear_train(y, X, ll_opts, 'col');
w = single(llm.w(1:end-1)');
b = single(llm.w(end)*opts.bias_mult);
otherwise
error('unknown solver: %s', solver);
end
% ------------------------------------------------------------------------
function [W, B, folds] = update_model_k_fold(rcnn_model, caches, imdb)
% ------------------------------------------------------------------------
opts = rcnn_model.training_opts;
num_images = length(imdb.image_ids);
folds = create_folds(num_images, opts.k_folds);
W = cell(opts.k_folds, 1);
B = cell(opts.k_folds, 1);
fprintf('Training k-fold models\n');
for i = imdb.class_ids
fprintf('\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n');
fprintf('Training folds for class %s\n', imdb.classes{i});
fprintf('~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n');
for f = 1:length(folds)
fprintf('Holding out fold %d\n', f);
[pos_inds, neg_inds] = get_cache_inds_from_fold(caches{i}, folds{f});
[new_w, new_b] = update_model(caches{i}, opts, ...
pos_inds, neg_inds);
W{f}(:,i) = new_w;
B{f}(i) = new_b;
end
end
% ------------------------------------------------------------------------
function [pos_inds, neg_inds] = get_cache_inds_from_fold(cache, fold)
% ------------------------------------------------------------------------
pos_inds = find(ismember(cache.keys_pos(:,1), fold) == false);
neg_inds = find(ismember(cache.keys_neg(:,1), fold) == false);
% ------------------------------------------------------------------------
function [X_pos, keys] = get_positive_pool5_features(imdb, opts)
% ------------------------------------------------------------------------
X_pos = cell(max(imdb.class_ids), 1);
keys = cell(max(imdb.class_ids), 1);
for i = 1:length(imdb.image_ids)
tic_toc_print('%s: pos features %d/%d\n', ...
procid(), i, length(imdb.image_ids));
d = rcnn_load_cached_pool5_features(opts.cache_name, ...
imdb.name, imdb.image_ids{i});
for j = imdb.class_ids
if isempty(X_pos{j})
X_pos{j} = single([]);
keys{j} = [];
end
sel = find(d.class == j);
if ~isempty(sel)
X_pos{j} = cat(1, X_pos{j}, d.feat(sel,:));
keys{j} = cat(1, keys{j}, [i*ones(length(sel),1) sel]);
end
end
end
% ------------------------------------------------------------------------
function cache = init_cache(X_pos, keys_pos)
% ------------------------------------------------------------------------
cache.X_pos = X_pos;
cache.X_neg = single([]);
cache.keys_neg = [];
cache.keys_pos = keys_pos;
cache.num_added = 0;
cache.retrain_limit = 2000;
cache.evict_thresh = -1.2;
cache.hard_thresh = -1.0001;
cache.pos_loss = [];
cache.neg_loss = [];
cache.reg_loss = [];
cache.tot_loss = [];