diff --git a/docs/docs/integrations/retrievers/self_query/hanavector_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/hanavector_self_query.ipynb new file mode 100644 index 0000000000000..0bdef3836c8a0 --- /dev/null +++ b/docs/docs/integrations/retrievers/self_query/hanavector_self_query.ipynb @@ -0,0 +1,246 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# SAP HANA Cloud Vector Engine\n", + "\n", + "For more information on how to setup the SAP HANA vetor store, take a look at the [documentation](/docs/integrations/vectorstores/sap_hanavector.ipynb).\n", + "\n", + "We use the same setup here:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# Use OPENAI_API_KEY env variable\n", + "# os.environ[\"OPENAI_API_KEY\"] = \"Your OpenAI API key\"\n", + "from hdbcli import dbapi\n", + "\n", + "# Use connection settings from the environment\n", + "connection = dbapi.connect(\n", + " address=os.environ.get(\"HANA_DB_ADDRESS\"),\n", + " port=os.environ.get(\"HANA_DB_PORT\"),\n", + " user=os.environ.get(\"HANA_DB_USER\"),\n", + " password=os.environ.get(\"HANA_DB_PASSWORD\"),\n", + " autocommit=True,\n", + " sslValidateCertificate=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To be able to self query with good performance we create additional metadata fields\n", + "for our vectorstore table in HANA:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create custom table with attribute\n", + "cur = connection.cursor()\n", + "cur.execute(\"DROP TABLE LANGCHAIN_DEMO_SELF_QUERY\", ignoreErrors=True)\n", + "cur.execute(\n", + " (\n", + " \"\"\"CREATE TABLE \"LANGCHAIN_DEMO_SELF_QUERY\" (\n", + " \"name\" NVARCHAR(100), \"is_active\" BOOLEAN, \"id\" INTEGER, \"height\" DOUBLE,\n", + " \"VEC_TEXT\" NCLOB, \n", + " \"VEC_META\" NCLOB, \n", + " \"VEC_VECTOR\" REAL_VECTOR\n", + " )\"\"\"\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's add some documents." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_community.vectorstores.hanavector import HanaDB\n", + "from langchain_core.documents import Document\n", + "from langchain_openai import OpenAIEmbeddings\n", + "\n", + "embeddings = OpenAIEmbeddings()\n", + "\n", + "# Prepare some test documents\n", + "docs = [\n", + " Document(\n", + " page_content=\"First\",\n", + " metadata={\"name\": \"adam\", \"is_active\": True, \"id\": 1, \"height\": 10.0},\n", + " ),\n", + " Document(\n", + " page_content=\"Second\",\n", + " metadata={\"name\": \"bob\", \"is_active\": False, \"id\": 2, \"height\": 5.7},\n", + " ),\n", + " Document(\n", + " page_content=\"Third\",\n", + " metadata={\"name\": \"jane\", \"is_active\": True, \"id\": 3, \"height\": 2.4},\n", + " ),\n", + "]\n", + "\n", + "db = HanaDB(\n", + " connection=connection,\n", + " embedding=embeddings,\n", + " table_name=\"LANGCHAIN_DEMO_SELF_QUERY\",\n", + " specific_metadata_columns=[\"name\", \"is_active\", \"id\", \"height\"],\n", + ")\n", + "\n", + "# Delete already existing documents from the table\n", + "db.delete(filter={})\n", + "db.add_documents(docs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Self querying\n", + "\n", + "Now for the main act: here is how to construct a SelfQueryRetriever for HANA vectorstore:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.chains.query_constructor.base import AttributeInfo\n", + "from langchain.retrievers.self_query.base import SelfQueryRetriever\n", + "from langchain_community.query_constructors.hanavector import HanaTranslator\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "llm = ChatOpenAI(model=\"gpt-3.5-turbo\")\n", + "\n", + "metadata_field_info = [\n", + " AttributeInfo(\n", + " name=\"name\",\n", + " description=\"The name of the person\",\n", + " type=\"string\",\n", + " ),\n", + " AttributeInfo(\n", + " name=\"is_active\",\n", + " description=\"Whether the person is active\",\n", + " type=\"boolean\",\n", + " ),\n", + " AttributeInfo(\n", + " name=\"id\",\n", + " description=\"The ID of the person\",\n", + " type=\"integer\",\n", + " ),\n", + " AttributeInfo(\n", + " name=\"height\",\n", + " description=\"The height of the person\",\n", + " type=\"float\",\n", + " ),\n", + "]\n", + "\n", + "document_content_description = \"A collection of persons\"\n", + "\n", + "hana_translator = HanaTranslator()\n", + "\n", + "retriever = SelfQueryRetriever.from_llm(\n", + " llm,\n", + " db,\n", + " document_content_description,\n", + " metadata_field_info,\n", + " structured_query_translator=hana_translator,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's use this retriever to prepare a (self) query for a person:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "query_prompt = \"Which person is not active?\"\n", + "\n", + "docs = retriever.invoke(input=query_prompt)\n", + "for doc in docs:\n", + " print(\"-\" * 80)\n", + " print(doc.page_content, \" \", doc.metadata)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also take a look at how the query is being constructed:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.chains.query_constructor.base import (\n", + " StructuredQueryOutputParser,\n", + " get_query_constructor_prompt,\n", + ")\n", + "\n", + "prompt = get_query_constructor_prompt(\n", + " document_content_description,\n", + " metadata_field_info,\n", + ")\n", + "output_parser = StructuredQueryOutputParser.from_components()\n", + "query_constructor = prompt | llm | output_parser\n", + "\n", + "sq = query_constructor.invoke(input=query_prompt)\n", + "\n", + "print(\"Structured query: \", sq)\n", + "\n", + "print(\"Translated for hana vector store: \", hana_translator.visit_structured_query(sq))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/libs/community/langchain_community/query_constructors/hanavector.py b/libs/community/langchain_community/query_constructors/hanavector.py new file mode 100644 index 0000000000000..f19ef8c278743 --- /dev/null +++ b/libs/community/langchain_community/query_constructors/hanavector.py @@ -0,0 +1,57 @@ +# HANA Translator/query constructor +from typing import Dict, Tuple, Union + +from langchain_core.structured_query import ( + Comparator, + Comparison, + Operation, + Operator, + StructuredQuery, + Visitor, +) + + +class HanaTranslator(Visitor): + """ + Translate internal query language elements to valid filters params for + HANA vectorstore. + """ + + allowed_operators = [Operator.AND, Operator.OR] + """Subset of allowed logical operators.""" + allowed_comparators = [ + Comparator.EQ, + Comparator.NE, + Comparator.GT, + Comparator.LT, + Comparator.GTE, + Comparator.LTE, + Comparator.IN, + Comparator.NIN, + # Comparator.CONTAIN, + Comparator.LIKE, + ] + + def _format_func(self, func: Union[Operator, Comparator]) -> str: + self._validate_func(func) + return f"${func.value}" + + def visit_operation(self, operation: Operation) -> Dict: + args = [arg.accept(self) for arg in operation.arguments] + return {self._format_func(operation.operator): args} + + def visit_comparison(self, comparison: Comparison) -> Dict: + return { + comparison.attribute: { + self._format_func(comparison.comparator): comparison.value + } + } + + def visit_structured_query( + self, structured_query: StructuredQuery + ) -> Tuple[str, dict]: + if structured_query.filter is None: + kwargs = {} + else: + kwargs = {"filter": structured_query.filter.accept(self)} + return structured_query.query, kwargs diff --git a/libs/community/langchain_community/vectorstores/hanavector.py b/libs/community/langchain_community/vectorstores/hanavector.py index adf76ee86f2f3..c38e80f183371 100644 --- a/libs/community/langchain_community/vectorstores/hanavector.py +++ b/libs/community/langchain_community/vectorstores/hanavector.py @@ -191,7 +191,8 @@ def _check_column( # type: ignore[no-untyped-def] if column_length is not None and column_length > 0: if rows[0][1] != column_length: raise AttributeError( - f"Column {column_name} has the wrong length: {rows[0][1]}" + f"Column {column_name} has the wrong length: {rows[0][1]} " + f"expected: {column_length}" ) else: raise AttributeError(f"Column {column_name} does not exist") @@ -529,10 +530,18 @@ def _process_filter_object(self, filter): # type: ignore[no-untyped-def] if special_op in COMPARISONS_TO_SQL: operator = COMPARISONS_TO_SQL[special_op] if isinstance(special_val, bool): - query_tuple.append("true" if filter_value else "false") + query_tuple.append("true" if special_val else "false") elif isinstance(special_val, float): sql_param = "CAST(? as float)" query_tuple.append(special_val) + elif ( + isinstance(special_val, dict) + and "type" in special_val + and special_val["type"] == "date" + ): + # Date type + sql_param = "CAST(? as DATE)" + query_tuple.append(special_val["date"]) else: query_tuple.append(special_val) # "$between" diff --git a/libs/community/tests/unit_tests/query_constructors/test_hanavector.py b/libs/community/tests/unit_tests/query_constructors/test_hanavector.py new file mode 100644 index 0000000000000..e20a583e049d5 --- /dev/null +++ b/libs/community/tests/unit_tests/query_constructors/test_hanavector.py @@ -0,0 +1,84 @@ +from typing import Dict, Tuple + +import pytest as pytest +from langchain_core.structured_query import ( + Comparator, + Comparison, + Operation, + Operator, + StructuredQuery, +) + +from langchain_community.query_constructors.hanavector import HanaTranslator + +DEFAULT_TRANSLATOR = HanaTranslator() + + +def test_visit_comparison() -> None: + comp = Comparison(comparator=Comparator.LT, attribute="foo", value=1) + expected = {"foo": {"$lt": 1}} + actual = DEFAULT_TRANSLATOR.visit_comparison(comp) + assert expected == actual + + +def test_visit_operation() -> None: + op = Operation( + operator=Operator.AND, + arguments=[ + Comparison(comparator=Comparator.LT, attribute="foo", value=2), + Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"), + Comparison(comparator=Comparator.GT, attribute="abc", value=2.0), + ], + ) + expected = { + "$and": [{"foo": {"$lt": 2}}, {"bar": {"$eq": "baz"}}, {"abc": {"$gt": 2.0}}] + } + actual = DEFAULT_TRANSLATOR.visit_operation(op) + assert expected == actual + + +def test_visit_structured_query() -> None: + query = "What is the capital of France?" + structured_query = StructuredQuery( + query=query, + filter=None, + ) + expected: Tuple[str, Dict] = (query, {}) + actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query) + assert expected == actual + + comp = Comparison(comparator=Comparator.LT, attribute="foo", value=1) + structured_query = StructuredQuery( + query=query, + filter=comp, + ) + expected = (query, {"filter": {"foo": {"$lt": 1}}}) + actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query) + assert expected == actual + + op = Operation( + operator=Operator.AND, + arguments=[ + Comparison(comparator=Comparator.LT, attribute="foo", value=2), + Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"), + Comparison(comparator=Comparator.GT, attribute="abc", value=2.0), + ], + ) + structured_query = StructuredQuery( + query=query, + filter=op, + ) + expected = ( + query, + { + "filter": { + "$and": [ + {"foo": {"$lt": 2}}, + {"bar": {"$eq": "baz"}}, + {"abc": {"$gt": 2.0}}, + ] + } + }, + ) + actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query) + assert expected == actual diff --git a/libs/langchain/langchain/retrievers/self_query/base.py b/libs/langchain/langchain/retrievers/self_query/base.py index c01f0f4c490aa..5d73756f5ff69 100644 --- a/libs/langchain/langchain/retrievers/self_query/base.py +++ b/libs/langchain/langchain/retrievers/self_query/base.py @@ -177,6 +177,16 @@ def _get_builtin_translator(vectorstore: VectorStore) -> Visitor: if isinstance(vectorstore, PGVector): return NewPGVectorTranslator() + try: + # Added in langchain-community==0.2.11 + from langchain_community.query_constructors.hanavector import HanaTranslator + from langchain_community.vectorstores import HanaDB + except ImportError: + pass + else: + if isinstance(vectorstore, HanaDB): + return HanaTranslator() + raise ValueError( f"Self query retriever with Vector Store type {vectorstore.__class__}" f" not supported."