-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhubconf.py
219 lines (168 loc) · 5.9 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from functools import partial
import torch
"""File for accessing the models via PyTorch Hub https://pytorch.org/hub/
Usage:
import torch
import torchvision.utils as vutils
# Choose to use the device.
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# Load the model into the specified device.
model = torch.hub.load("...", "...", pretrained=True, progress=True, verbose=False)
model.eval()
model = model.to(device)
"""
dependencies = ["torch"]
def resnet34_corn_afad(pretrained=False, progress=True):
"""
ResNet34 ordinal regression model trained with CORN on AFAD
pretrained (bool): kwargs, load pretrained weights into the model
"""
from _train.helper import resnet34base
NUM_CLASSES = 13
model = resnet34base(
num_classes=NUM_CLASSES, grayscale=False, resnet34_avg_poolsize=4
)
model.output_layer = torch.nn.Linear(512, NUM_CLASSES - 1)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
logits = self.output_layer(x)
return logits
def add_method(obj, func):
"Bind a function and store it in an object"
setattr(obj, func.__name__, partial(func, obj))
add_method(model, forward)
if pretrained:
checkpoint = (
"https://github.com/rasbt/ord-torchhub/releases/"
"download/1.0.0/resnet34_corn_afad.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, progress=True, map_location=torch.device("cpu")
)
model.load_state_dict(state_dict)
return model
def resnet34_coral_afad(pretrained=False, progress=True):
"""
ResNet34 ordinal regression model trained with CORAL on AFAD
pretrained (bool): kwargs, load pretrained weights into the model
"""
from _train.helper import resnet34base
NUM_CLASSES = 13
model = resnet34base(
num_classes=NUM_CLASSES, grayscale=False, resnet34_avg_poolsize=4
)
model.output_layer = torch.nn.Linear(512, 1, bias=False)
model.output_biases = torch.nn.Parameter(torch.zeros(NUM_CLASSES - 1).float())
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
logits = self.output_layer(x) + self.output_biases
return logits
def add_method(obj, func):
"Bind a function and store it in an object"
setattr(obj, func.__name__, partial(func, obj))
add_method(model, forward)
if pretrained:
checkpoint = (
"https://github.com/rasbt/ord-torchhub/"
"releases/download/1.0.0/resnet34_coral_afad.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, progress=True, map_location=torch.device("cpu")
)
model.load_state_dict(state_dict)
return model
def resnet34_niu_afad(pretrained=False, progress=True):
"""
ResNet34 ordinal regression model trained with Niu et al.'s loss on AFAD
pretrained (bool): kwargs, load pretrained weights into the model
"""
from _train.helper import resnet34base
NUM_CLASSES = 13
model = resnet34base(
num_classes=NUM_CLASSES, grayscale=False, resnet34_avg_poolsize=4
)
model.output_layer = torch.nn.Linear(512, NUM_CLASSES - 1)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
logits = self.output_layer(x)
return logits
def add_method(obj, func):
"Bind a function and store it in an object"
setattr(obj, func.__name__, partial(func, obj))
add_method(model, forward)
if pretrained:
checkpoint = (
"https://github.com/rasbt/ord-torchhub/"
"releases/download/1.0.0/resnet34_niu_afad.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, progress=True, map_location=torch.device("cpu")
)
model.load_state_dict(state_dict)
return model
def resnet34_crossentr_afad(pretrained=False, progress=True):
"""
ResNet34 ordinal regression model trained with regular Cross Entropy
Loss on AFAD.
pretrained (bool): kwargs, load pretrained weights into the model
"""
from _train.helper import resnet34base
NUM_CLASSES = 13
model = resnet34base(
num_classes=NUM_CLASSES, grayscale=False, resnet34_avg_poolsize=4
)
model.output_layer = torch.nn.Linear(512, NUM_CLASSES)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
logits = self.output_layer(x)
return logits
def add_method(obj, func):
"Bind a function and store it in an object"
setattr(obj, func.__name__, partial(func, obj))
add_method(model, forward)
if pretrained:
checkpoint = (
"https://github.com/rasbt/ord-torchhub/releases/"
"download/1.0.0/resnet34_crossentr_afad.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, progress=True, map_location=torch.device("cpu")
)
model.load_state_dict(state_dict)
return model