-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfairness.py
119 lines (88 loc) · 3.61 KB
/
fairness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from sklearn.model_selection import train_test_split
from fairlearn.reductions import GridSearch
from fairlearn.reductions import DemographicParity, ErrorRate
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.linear_model import LogisticRegression
import pandas as pd
from sklearn.datasets import fetch_openml
import sklearn.metrics as skm
import wandb
wandb.login()
run_name = "fairlearn-sex-nodp-run1"
data = fetch_openml(data_id = 1590, as_frame = True)
X_raw = data.data
Y = (data.target == '>50K') * 1
A = X_raw["sex"]
X = X_raw.drop(labels = ['sex'], axis = 1)
#print(X)
X = pd.get_dummies(X) #one hot
print("X has been encoded.\n")
#print(len(X))
#print(X)
sc = StandardScaler()
X_scaled = sc.fit_transform(X);
X_scaled = pd.DataFrame(X_scaled, columns = X.columns)
le = LabelEncoder()
Y = le.fit_transform(Y)
#print(f"TYpe of X: {type(X_scaled)} \n")
#print(type(Y))
#print(f"Type of A: {type(A)} \n")
wandb.init(project="fairlearn-pytorch-example-notebook", name = run_name, config={
"run_name": run_name,
"architecture": "Sklearn LogisticRegression",
"dataset": "adult",
})
config = wandb.config
print("Y has been tranformed. Assigning sets.\n")
X_train, X_test, Y_train, Y_test, A_train, A_test = train_test_split(
X_scaled, Y, A, test_size = 0.2, random_state = 0, stratify = Y
)
#
X_train = X_train.reset_index(drop=True)
A_train = A_train.reset_index(drop=True)
X_test = X_test.reset_index(drop = True)
A_test = A_test.reset_index(drop=True)
print("About to start bias mitigation training.\n")
unmitigated_predictor = LogisticRegression(solver = 'liblinear', fit_intercept = True)
unmitigated_predictor.fit(X_train, Y_train)
#--------- GRID SEARCH -----------------------#
print("Commencing GridSearch.\n")
sweep = GridSearch(LogisticRegression(solver='liblinear', fit_intercept=True),
constraints = DemographicParity(),
grid_size=71)
sweep.fit(X_train, Y_train, sensitive_features = A_train)
predictors = sweep.predictors_
errors, disparities, accuracies = [], [], []
for m in predictors:
def classifier(X): return m.predict(X)
error = ErrorRate()
print(error, "\n")
error.load_data(X_train, pd.Series(Y_train), sensitive_features=A_train)
disparity = DemographicParity()
disparity.load_data(X_train, pd.Series(Y_train), sensitive_features= A_train)
errors.append(error.gamma(classifier)[0])
disparities.append(disparity.gamma(classifier).max())
accuracy = skm.accuracy_score(Y_test, classifier(X_test))
accuracies.append(accuracy)
error_log = error.gamma(classifier)[0]
disparity_log = disparity.gamma(classifier).max()
wandb.log({
'error': error_log,
'disparity': disparity_log,
'acc': accuracy
})
all_results = pd.DataFrame({"predictor": predictors, "error": errors, "disparity": disparities, "accuracy": accuracies})
all_results2 = pd.DataFrame({"error": errors, "disparity": disparities, "accuracy": accuracies})
non_dominated= []
for row in all_results.itertuples():
error_for_lower_or_eq_disparity = all_results["error"][all_results["disparity"] <= row.disparity]
if row.error <= error_for_lower_or_eq_disparity.min():
non_dominated.append(row.predictor)
print(all_results)
print("#################################################")
#print(non_dominated)
file_path = "fairlearn-notebook//all_results."+ run_name
file_object = open(file_path, "a+")
all_results2.to_csv(file_object, index = False)
file_object.close()
#--- DASHBOARD STUFF ---