-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathtrain.py
156 lines (116 loc) · 5.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import dataset
import tensorflow as tf
import os
import time
from datetime import timedelta
import math
import random
import numpy as np
batch_size = 16
num_inputs = 2
train_path = 'training_data'
classes = [d for d in os.listdir(train_path) if os.path.isdir(os.path.join(train_path, d))]
num_classes = len(classes)
data = dataset.read_train_sets(train_path, classes, validation_size=0.3)
session = tf.Session()
x = tf.placeholder(tf.float32, shape=[None, 96, 128, num_inputs], name='x')
y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')
y_true_cls = tf.argmax(y_true, axis=1)
filter_size_conv1 = 3
num_filters_conv1 = 32
filter_size_conv2 = 3
num_filters_conv2 = 32
filter_size_conv3 = 3
num_filters_conv3 = 64
fc_layer_size = 128
def create_weights(shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.05))
def create_biases(size):
return tf.Variable(tf.constant(0.05, shape=[size]))
def create_convolutional_layer_tim(input, num_input_channels, conv_filter_size1, conv_filter_size2, num_filters):
weights = create_weights(shape=[conv_filter_size1, conv_filter_size2, num_input_channels, num_filters])
biases = create_biases(num_filters)
layer = tf.nn.conv2d(input=input, filter=weights, strides=[1, 1, 1, 1], padding='SAME')
layer += biases
layer = tf.nn.max_pool(value=layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
layer = tf.nn.relu(layer)
# layer = tf.nn.dropout(layer, 0.5)
return layer
def create_convolutional_layer(input, num_input_channels, conv_filter_size, num_filters):
weights = create_weights(shape=[conv_filter_size, conv_filter_size, num_input_channels, num_filters])
biases = create_biases(num_filters)
layer = tf.nn.conv2d(input=input, filter=weights, strides=[1, 1, 1, 1], padding='SAME')
layer += biases
layer = tf.nn.max_pool(value=layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
layer = tf.nn.relu(layer)
return layer
def create_flatten_layer(layer):
layer_shape = layer.get_shape()
num_features = layer_shape[1:4].num_elements()
layer = tf.reshape(layer, [-1, num_features])
return layer
def create_fc_layer(input, num_inputs, num_outputs, use_relu=True):
weights = create_weights(shape=[num_inputs, num_outputs])
biases = create_biases(num_outputs)
layer = tf.matmul(input, weights) + biases
if use_relu:
layer = tf.nn.relu(layer)
return layer
'''
layer_conv1 = create_convolutional_layer(input=x,
num_input_channels=num_inputs,
conv_filter_size=filter_size_conv1,
num_filters=num_filters_conv1)
layer_conv2 = create_convolutional_layer(input=layer_conv1,
num_input_channels=num_filters_conv1,
conv_filter_size=filter_size_conv2,
num_filters=num_filters_conv2)
layer_conv3 = create_convolutional_layer(input=layer_conv2,
num_input_channels=num_filters_conv2,
conv_filter_size=filter_size_conv3,
num_filters=num_filters_conv3)
'''
# Tim O'Shea network https://arxiv.org/pdf/1602.04105.pdf
layer_conv1 = create_convolutional_layer_tim(input=x,
num_input_channels=num_inputs,
conv_filter_size1=1,
conv_filter_size2=3,
num_filters=64)
layer_conv3 = create_convolutional_layer_tim(input=layer_conv1,
num_input_channels=64,
conv_filter_size1=2,
conv_filter_size2=3,
num_filters=16)
layer_flat = create_flatten_layer(layer_conv3)
layer_fc1 = create_fc_layer(input=layer_flat, num_inputs=layer_flat.get_shape()[1:4].num_elements(),
num_outputs=fc_layer_size, use_relu=True)
layer_fc2 = create_fc_layer(input=layer_fc1, num_inputs=fc_layer_size, num_outputs=num_classes, use_relu=False)
y_pred = tf.nn.softmax(layer_fc2, name='y_pred')
y_pred_cls = tf.argmax(y_pred, axis=1)
session.run(tf.global_variables_initializer())
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2, labels=y_true)
cost = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)
correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
session.run(tf.global_variables_initializer())
def show_progress(epoch, feed_dict_train, feed_dict_validate, val_loss):
acc = session.run(accuracy, feed_dict=feed_dict_train)
val_acc = session.run(accuracy, feed_dict=feed_dict_validate)
msg = "Epoch {0}, Train Acc: {1:>6.1%}, Val Acc: {2:>6.1%}, Val Loss: {3:.3f}"
print(msg.format(epoch + 1, acc, val_acc, val_loss))
saver = tf.train.Saver()
# loading pre-trained model to continue training
if (os.path.exists('checkpoint')):
saver.restore(session, tf.train.latest_checkpoint('./'))
for i in range(0, 25000):
x_batch, y_true_batch, _, cls_batch = data.train.next_batch(batch_size)
x_valid_batch, y_valid_batch, _, valid_cls_batch = data.valid.next_batch(batch_size)
feed_dict_tr = {x: x_batch, y_true: y_true_batch}
feed_dict_val = {x: x_valid_batch, y_true: y_valid_batch}
session.run(optimizer, feed_dict=feed_dict_tr)
if i % int(data.train.num_examples / batch_size) == 0:
val_loss = session.run(cost, feed_dict=feed_dict_val)
epoch = int(i / int(data.train.num_examples / batch_size))
show_progress(epoch, feed_dict_tr, feed_dict_val, val_loss)
saver.save(session, './rtlsdr-model')