Skip to content

Latest commit

 

History

History
235 lines (164 loc) · 6.63 KB

README.md

File metadata and controls

235 lines (164 loc) · 6.63 KB

Get started

Python Version from PEP 621 TOML Read the Docs GitHub

3D object detection from infrastructure for autonomous driving. Check the documentation for more information.

Real-time visualization of the 3D object detection with ROS

Installation

Clone this repository and its submodules:

git clone https://github.com/ramajoballester/sensus-loci.git
cd sensus-loci
git submodule update --init --recursive

And follow the mmdetection3d installation instructions from official website.

After installing mmdetection3d, install sensus-loci:

pip install -e .

For full documentation building support, install the full version of the package:

pip install -e .[full]

It is recommended to add symbolic links to each dataset folder in data/ directory inside sensus-loci and mmdetection3d to get the exact directory tree as in mmdetection3d docs. For example:

ln -s ~/path/to/dataset/ data/dataset

Branches description

  • main
  • dev: just behind main

Install DAIR-V2X version

Install the v0.17.1 version of mmdetection3d:

conda create -n sensus-dair python=3.7.*
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
pip install mmcv-full==1.3.8
pip install mmdet==2.14.0
pip install mmsegmentation==0.14.1
git clone https://github.com/open-mmlab/mmdetection3d.git --branch v0.17.1 --single-branch

Install the modified pypcd package:

git clone https://github.com/klintan/pypcd.git
cd pypcd
python setup.py install

Add DAIR-V2X to the python path (no installation is provided):

export PYTHONPATH=/path/to/dair-v2x:$PYTHONPATH

Convert DAIR to kitti format, infrastructure set:

python tools/dataset_converter/dair2kitti.py --source-root ~/datasets/DAIR/cooperative-vehicle-infrastructure/infrastructure-side/ --target-root ~/datasets/DAIR/cooperative-vehicle-infrastructure-kittiformat/infrastructure-side/ --split-path data/split_datas/cooperative-split-data.json --label-type lidar --sensor-view infrastructure --no-classmerge --temp-root ~/datasets/.tmp_file

and vehicle set:

python tools/dataset_converter/dair2kitti.py --source-root ~/datasets/DAIR/cooperative-vehicle-infrastructure/vehicle-side/ --target-root ~/datasets/DAIR/cooperative-vehicle-infrastructure-kittiformat/vehicle-side/ --split-path data/split_datas/cooperative-split-data.json --label-type lidar --sensor-view vehicle --no-classmerge --temp-root ~/datasets/.tmp_file

Generate infos with mmdetection3d (can be done with latest version). Infrastructure set:

python tools/create_data.py kitti --root-path ~/datasets/DAIR/cooperative-vehicle-infrastructure-kittiformat/infrastructure-side/ --out-dir ~/datasets/DAIR/cooperative-vehicle-infrastructure-kittiformat/infrastructure-side/ --extra-tag dair

and vehicle set:

python tools/create_data.py kitti --root-path ~/datasets/DAIR/cooperative-vehicle-infrastructure-kittiformat/vehicle-side/ --out-dir ~/datasets/DAIR/cooperative-vehicle-infrastructure-kittiformat/vehicle-side/ --extra-tag dair

Cooperative infrastructure set: +----------------+--------+ | category | number | +----------------+--------+ | Pedestrian | 19444 | | Cyclist | 9304 | | Car | 94936 | | Van | 11644 | | Truck | 4601 | | Person_sitting | 0 | | Tram | 0 | | Misc | 0 | +----------------+--------+

Cooperative-vehicle set: +----------------+--------+ | category | number | +----------------+--------+ | Pedestrian | 6207 | | Cyclist | 6284 | | Car | 64634 | | Van | 7785 | | Truck | 5689 | | Person_sitting | 0 | | Tram | 0 | | Misc | 0 | +----------------+--------+

Install Open3D build with Jupyter support

Rebuild with all the packages installed in system

  1. Install cmake (from kitware repository) and gcc (latest version with conda?)
  2. Install npm, yarn and nodejs:
sudo apt install npm
sudo npm install -g yarn
sudo npm install -g n
sudo n stable
  1. Download the Open3D source code:
git clone https://github.com/isl-org/Open3D.git
cd Open3D
  1. Install system dependencies from Open3D/util/install_deps_ubuntu.sh

Maybe install OSMesa for headless support and GLFW (?):

sudo apt-get install libosmesa6-dev
sudo apt-get install libglfw3 ?

It might be required to reboot.

  1. Activate conda and install dependencies:
pip install -r python/requirements_build.txt
pip install -r python/requirements_jupyter_build.txt
  1. Build Open3D
mkdir build && cd build

Build with Jupyter support:

cmake -DBUILD_JUPYTER_EXTENSION=ON ..

With headless support:

cmake -DENABLE_HEADLESS_RENDERING=ON \
    -DBUILD_GUI=OFF \
    -DBUILD_WEBRTC=OFF \
    -DUSE_SYSTEM_GLEW=OFF \
    -DUSE_SYSTEM_GLFW=OFF \
    ..
  1. Install Open3D
make install-pip-package -j$(nproc)

ROS 2 support

To install the ros_sensus ROS2 package, go to the ros directory ./sensus/ros and follow the instructions for ROS2 installation.

Known issues

Package versions

  • Numpy has to be downgraded to 1.22 #2821 (1.23 also works)
  • Numba == 0.57.*

MMDetection3D

When running test.py, add this for the results prefix:

--cfg-options test_evaluator.pklfile_prefix=../sensus/output/

NCCL

RuntimeError: NCCL communicator was aborted on rank 1. Original reason for failure was: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=15560, OpType=BROADCAST, Timeout(ms)=1800000) ran for 1807962 milliseconds before timing out.

export NCCL_IB_GID_INDEX=3

TODO

  • Fix roty angle in DAIR-V2X kittiformat
  • Transform jpg to png in DAIR-V2X kittiformat
  • Adjust velodyne reduced ranges
  • Create infos for DAIR-V2X classes. Currently, they are KITTI classes.

mmcv 2.1.0 https://github.com/open-mmlab/mmcv mmdet 3.3.0 https://github.com/open-mmlab/mmdetection mmdet3d 1.4.0 /home/breaststroker/alvaro/sensus-loci/mmdetection3d mmengine 0.10.3