forked from open-mmlab/mmdetection3d
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
127 lines (121 loc) · 4.04 KB
/
pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
_base_ = [
'../_base_/datasets/kitti-mono3d.py', '../_base_/models/pgd.py',
'../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
data_preprocessor=dict(
type='Det3DDataPreprocessor',
mean=[103.530, 116.280, 123.675],
std=[1.0, 1.0, 1.0],
bgr_to_rgb=False,
pad_size_divisor=32),
backbone=dict(frozen_stages=0),
neck=dict(start_level=0, num_outs=4),
bbox_head=dict(
num_classes=3,
bbox_code_size=7,
pred_attrs=False,
pred_velo=False,
pred_bbox2d=True,
use_onlyreg_proj=True,
strides=(4, 8, 16, 32),
regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 1e8)),
group_reg_dims=(2, 1, 3, 1, 16,
4), # offset, depth, size, rot, kpts, bbox2d
reg_branch=(
(256, ), # offset
(256, ), # depth
(256, ), # size
(256, ), # rot
(256, ), # kpts
(256, ) # bbox2d
),
centerness_branch=(256, ),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_centerness=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
use_depth_classifier=True,
depth_branch=(256, ),
depth_range=(0, 70),
depth_unit=10,
division='uniform',
depth_bins=8,
pred_keypoints=True,
weight_dim=1,
loss_depth=dict(
type='UncertainSmoothL1Loss', alpha=1.0, beta=3.0,
loss_weight=1.0),
bbox_coder=dict(
type='PGDBBoxCoder',
base_depths=((28.01, 16.32), ),
base_dims=((0.8, 1.73, 0.6), (1.76, 1.73, 0.6), (3.9, 1.56, 1.6)),
code_size=7)),
# set weight 1.0 for base 7 dims (offset, depth, size, rot)
# 0.2 for 16-dim keypoint offsets and 1.0 for 4-dim 2D distance targets
train_cfg=dict(code_weight=[
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0
]),
test_cfg=dict(nms_pre=100, nms_thr=0.05, score_thr=0.001, max_per_img=20))
backend_args = None
train_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=False,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
dict(type='mmdet.Resize', scale=(1242, 375), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Pack3DDetInputs',
keys=[
'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers_2d', 'depths'
]),
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(type='mmdet.Resize', scale_factor=1.0),
dict(type='Pack3DDetInputs', keys=['img'])
]
train_dataloader = dict(
batch_size=3, num_workers=3, dataset=dict(pipeline=train_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# optimizer
optim_wrapper = dict(
optimizer=dict(lr=0.001),
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.),
clip_grad=dict(max_norm=35, norm_type=2))
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0 / 3,
by_epoch=False,
begin=0,
end=500),
dict(
type='MultiStepLR',
begin=0,
end=48,
by_epoch=True,
milestones=[32, 44],
gamma=0.1)
]
train_cfg = dict(max_epochs=48, val_interval=2)
auto_scale_lr = dict(base_batch_size=12)