-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathshow_classifications.py
90 lines (75 loc) · 3.71 KB
/
show_classifications.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#
# Copyright (c) 2016 Qualcomm Technologies, Inc.
# All Rights Reserved.
# Confidential and Proprietary - Qualcomm Technologies, Inc.
#
import argparse
import heapq
import numpy as np
import os
def main():
parser = argparse.ArgumentParser(description='Display alexnet classification results.')
parser.add_argument('-i', '--input_list',
help='File containing input list used to generate output_dir.', required=True)
parser.add_argument('-o', '--output_dir',
help='Output directory containing Result_X/SUFFIX/prob.raw files matching input_list.', required=True)
parser.add_argument('-s', '--suffix_path',
help='Suffix to output directory containing Result_X/SUFFIX/prob.raw files matching input_list.', required=True)
parser.add_argument('-l', '--labels_file',
help='Path to ilsvrc_2012_labels.txt', required=True)
parser.add_argument('-v', '--verbose_results',
help='Display top 5 classifications', action='store_true')
args = parser.parse_args()
num_labels = 5
input_list = os.path.abspath(args.input_list)
output_dir = os.path.abspath(args.output_dir)
suffix_path = args.suffix_path
labels_file = os.path.abspath(args.labels_file)
display_top5 = args.verbose_results
if not os.path.isfile(input_list):
raise RuntimeError('input_list %s does not exist' % input_list)
if not os.path.isdir(output_dir):
raise RuntimeError('output_dir %s does not exist' % output_dir)
if not os.path.isfile(labels_file):
raise RuntimeError('labels_file %s does not exist' % labels_file)
with open(labels_file, 'r') as f:
labels = [line.strip() for line in f.readlines()]
if len(labels) != num_labels:
raise RuntimeError('Invalid labels_file: need num_labels categories')
with open(input_list, 'r') as f:
input_files = [line.strip() for line in f.readlines()]
if len(input_files) <= 0:
print('No files listed in input_files')
else:
print('Classification results')
max_filename_len = max([len(file) for file in input_files])
total = 0
wrong = 0
for idx, val in enumerate(input_files):
cur_results_dir = 'Result_' + str(idx)
cur_results_file = os.path.join(output_dir, cur_results_dir, suffix_path) + '0.raw'
if not os.path.isfile(cur_results_file):
raise RuntimeError('missing results file: ' + cur_results_file)
float_array = np.fromfile(cur_results_file, dtype=np.float32)
if len(float_array) != num_labels:
raise RuntimeError(str(len(float_array)) + ' outputs in ' + cur_results_file)
if not display_top5:
max_prob = max(float_array)
max_prob_index = np.where(float_array == max_prob)[0][0]
max_prob_category = labels[max_prob_index]
if not max_prob_category in val:
wrong += 1
total += 1
display_text = '%s %f %s %s [%s]' % (
val.ljust(max_filename_len), max_prob, str(max_prob_index).rjust(3), max_prob_category, max_prob_category in val)
else:
top5_prob = heapq.nlargest(5, xrange(len(float_array)), float_array.take)
for i, idx in enumerate(top5_prob):
prob = float_array[idx]
prob_category = labels[idx]
display_text = '%s %f %s %s' % (
val.ljust(max_filename_len), prob, str(idx).rjust(3), prob_category)
print(display_text)
print(total, wrong, 100*(total-wrong)/total)
if __name__ == '__main__':
main()