forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexponential_search.py
43 lines (35 loc) · 1.76 KB
/
exponential_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# =============================================================================
# Complexity of this algortihm is O(log i)
# where, i is the position where the element lies or is supposed to lie.
# This is better than O(log n)
# where, n is the number of elements in the array.
# Hence, this is better than Binary Search.
# =============================================================================
def exponential_search(search_list, left, right, target):
# just checking for the 0th index individually
if search_list[0] == target:
return "Found at 0"
# initializing the index to start searching for elements
i = 1
# we only check until the index is greater than equal to the element to be found or until it goes beyond the length of the list
while i < len(search_list) and search_list[i] <= target:
i *= 2 # index is doubled in each iteration
index = binary_search(search_list, i//2, min(i, len(search_list)-1), target)
return index
# applying binary search within the range where the element could be
def binary_search(search_list, left, right, target):
if left > right:
return "Not Found!"
middle = (left + right) // 2
if search_list[middle] == target:
return "Found at " + str(middle)
elif search_list[middle] > target:
return binary_search(search_list, left, middle - 1, target)
else:
return binary_search(search_list, middle + 1, right, target)
def main():
search_list = list(map(int, input("Enter space separated numbers for the list\n").split()))
search_value = int(input("Enter value to search\n"))
print("Sorted list:", sorted(search_list))
print(exponential_search(sorted(search_list), 0, len(search_list)-1, search_value))
main()