forked from milesial/Pytorch-UNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
32 lines (24 loc) · 1.06 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
import torch.nn.functional as F
from tqdm import tqdm
from dice_loss import dice_coeff
def eval_net(net, loader, device, n_val):
"""Evaluation without the densecrf with the dice coefficient"""
net.eval()
tot = 0
with tqdm(total=n_val, desc='Validation round', unit='img', leave=False) as pbar:
for batch in loader:
imgs = batch['image']
true_masks = batch['mask']
imgs = imgs.to(device=device, dtype=torch.float32)
mask_type = torch.float32 if net.n_classes == 1 else torch.long
true_masks = true_masks.to(device=device, dtype=mask_type)
mask_pred = net(imgs)
for true_mask, pred in zip(true_masks, mask_pred):
pred = (pred > 0.5).float()
if net.n_classes > 1:
tot += F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0)).item()
else:
tot += dice_coeff(pred, true_mask.squeeze(dim=1)).item()
pbar.update(imgs.shape[0])
return tot / n_val