-
Notifications
You must be signed in to change notification settings - Fork 28
/
simulation_microseconds.py
43 lines (31 loc) · 1.84 KB
/
simulation_microseconds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from source_simulator import *
import numpy as np
from vector3 import *
nm = 1e-9
um = 1e-6
def random_in_unit_disk(size):
"""generates random vectors uniformly distributed inside a circle"""
r = np.sqrt(np.random.rand(size))
phi = np.random.rand(size)*2*np.pi
return r * np.cos(phi), r * np.sin(phi)
def random_sources_in_disk(size, power, wavelength_mean, bandwidth, r):
"""generates random point sorces with random phases uniformly distributed inside a circle"""
source_list = [None]*size
x0, y0 = random_in_unit_disk(size)
x0, y0 = r*x0,r*y0
phase = np.random.rand(size)* 2*np.pi
wavelength = wavelength_mean + bandwidth*(np.random.rand(size)-0.5)
for i in range(size):
source_list[i] = Source(power = 1, λ = wavelength[i], phase = phase[i], pos = vec3(x0[i],y0[i],0))
return source_list
N =30 # number of point sources
sim = Source_system( random_sources_in_disk(N,power = 1, wavelength_mean = 650 * nm , bandwidth = 1.0 * nm, r = 2.0* um ))
sim.visualize_field_in_xy_plane(grid_divisions = 150
, rang = [-10* um,10* um,-10* um,10* um], # grid size
vmin = 0, vmax = np.sqrt(N/( (5*um)**2)), # matplotlib imshow parameter: data range that the colormap covers
number_of_samples = 1000, #for this example, you are going to need a lot of samples to converge to the solution.
time_average_size = 0.01,
timescale = 1e-6, # order of magnitude of the simulation time
lengthscale = um, # order of magnitude of the grid
complex_average = True # makes convergence of the integration faster
)