-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet_build.py
366 lines (275 loc) · 14.4 KB
/
unet_build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose, BatchNormalization
from keras.optimizers import Adam
import tensorflow as tf
from keras import backend as K
import os
##VERSIONS: Tensorflow 1.2.0; Keras 2.0.6
#Should work with later versions just fine, though some minor changes to imports may be useful.
#The architecture implemented here is a 256x256 U-Net, though I may add support for deeper U-Nets if this works
#SUPER IMPORTANT - DEFINE WHICH GPU TO USE, IF RELEVANT
os.environ['CUDA_VISIBLE_DEVICES'] = '1' # or '1' or whichever GPU is available on your machine
#use nvidia-smi to see which devices are currently in use by one person or another, and use the one not in use.
#Implementation heavily tweaked from https://github.com/petrosgk/Kaggle-Carvana-Image-Masking-Challenge/blob/master/model/u_net.py to use Conv2DTranspose instead of Upsampling2D+Conv2D; also simplified Conv2D calls
## Define dice coefficient metric and loss function associated with it
def dice_coef(y_true, y_pred):
smooth = 1e-5
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return 1-dice_coef(y_true, y_pred)
## Define IoU metric
def mean_iou(y_true, y_pred):
prec = []
for t in np.arange(0.5, 1.0, 0.05):
y_pred_ = tf.to_int32(y_pred > t)
score, up_opt = tf.metrics.mean_iou(y_true, y_pred_, 2)
K.get_session().run(tf.local_variables_initializer())
with tf.control_dependencies([up_opt]):
score = tf.identity(score)
prec.append(score)
return K.mean(K.stack(prec), axis=0)
def get_unet_128(input_shape=(128, 128, 1),
num_classes=1, learn_rate=1e-4, loss_func='binary_crossentropy', metric_list=[dice_coef]):
inputs = Input(shape=input_shape)
# 128
down1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
down1 = Conv2D(64, (3, 3), activation='relu', padding='same')(down1)
down1_pool = MaxPooling2D((2, 2))(down1)
# 64
down2 = Conv2D(128, (3, 3), activation='relu', padding='same')(down1_pool)
down2 = Conv2D(128, (3, 3), activation='relu', padding='same')(down2)
down2_pool = MaxPooling2D((2, 2))(down2)
# 32
down3 = Conv2D(256, (3, 3), activation='relu', padding='same')(down2_pool)
down3 = Conv2D(256, (3, 3), activation='relu', padding='same')(down3)
down3_pool = MaxPooling2D((2, 2))(down3)
# 16
down4 = Conv2D(512, (3, 3), activation='relu', padding='same')(down3_pool)
down4 = Conv2D(512, (3, 3), activation='relu', padding='same')(down4)
down4_pool = MaxPooling2D((2, 2))(down4)
# 8
center = Conv2D(1024, (3, 3), activation='relu', padding='same')(down4_pool)
center = Conv2D(1024, (3, 3), activation='relu', padding='same')(center)
# center
up4 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(center)
up4 = concatenate([down4, up4], axis=3)
up4 = Conv2D(512, (3, 3), activation='relu', padding='same')(up4)
up4 = Conv2D(512, (3, 3), activation='relu', padding='same')(up4)
# 16
up3 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(up4)
up3 = concatenate([down3, up3], axis=3)
up3 = Conv2D(256, (3, 3), activation='relu', padding='same')(up3)
up3 = Conv2D(256, (3, 3), activation='relu', padding='same')(up3)
# 32
up2 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(up3)
up2 = concatenate([down2, up2], axis=3)
up2 = Conv2D(128, (3, 3), activation='relu', padding='same')(up2)
up2 = Conv2D(128, (3, 3), activation='relu', padding='same')(up2)
# 64
up1 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(up2)
up1 = concatenate([down1, up1], axis=3)
up1 = Conv2D(64, (3, 3), activation='relu', padding='same')(up1)
up1 = Conv2D(64, (3, 3), activation='relu', padding='same')(up1)
# 128
classify = Conv2D(num_classes, (1, 1), activation='sigmoid')(up1)
model = Model(inputs=inputs, outputs=classify)
model.compile(optimizer=Adam(lr=learn_rate), loss=loss_func, metrics=[dice_coef])
return model
def get_unet_256(input_shape=(256, 256, 1),
num_classes=1, learn_rate=1e-4, loss_func='binary_crossentropy', metric_list=[dice_coef]):
inputs = Input(shape=input_shape)
# 256
down0 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
down0 = Conv2D(32, (3, 3), activation='relu', padding='same')(down0)
down0_pool = MaxPooling2D((2, 2))(down0)
# 128
down1 = Conv2D(64, (3, 3), activation='relu', padding='same')(down0_pool)
down1 = Conv2D(64, (3, 3), activation='relu', padding='same')(down1)
down1_pool = MaxPooling2D((2, 2))(down1)
# 64
down2 = Conv2D(128, (3, 3), activation='relu', padding='same')(down1_pool)
down2 = Conv2D(128, (3, 3), activation='relu', padding='same')(down2)
down2_pool = MaxPooling2D((2, 2))(down2)
# 32
down3 = Conv2D(256, (3, 3), activation='relu', padding='same')(down2_pool)
down3 = Conv2D(256, (3, 3), activation='relu', padding='same')(down3)
down3_pool = MaxPooling2D((2, 2))(down3)
# 16
down4 = Conv2D(512, (3, 3), activation='relu', padding='same')(down3_pool)
down4 = Conv2D(512, (3, 3), activation='relu', padding='same')(down4)
down4_pool = MaxPooling2D((2, 2))(down4)
# 8
center = Conv2D(1024, (3, 3), activation='relu', padding='same')(down4_pool)
center = Conv2D(1024, (3, 3), activation='relu', padding='same')(center)
# center
up4 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(center)
up4 = concatenate([down4, up4], axis=3)
up4 = Conv2D(512, (3, 3), activation='relu', padding='same')(up4)
up4 = Conv2D(512, (3, 3), activation='relu', padding='same')(up4)
# 16
up3 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(up4)
up3 = concatenate([down3, up3], axis=3)
up3 = Conv2D(256, (3, 3), activation='relu', padding='same')(up3)
up3 = Conv2D(256, (3, 3), activation='relu', padding='same')(up3)
# 32
up2 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(up3)
up2 = concatenate([down2, up2], axis=3)
up2 = Conv2D(128, (3, 3), activation='relu', padding='same')(up2)
up2 = Conv2D(128, (3, 3), activation='relu', padding='same')(up2)
# 64
up1 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(up2)
up1 = concatenate([down1, up1], axis=3)
up1 = Conv2D(64, (3, 3), activation='relu', padding='same')(up1)
up1 = Conv2D(64, (3, 3), activation='relu', padding='same')(up1)
# 128
up0 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(up1)
up0 = concatenate([down0, up0], axis=3)
up0 = Conv2D(32, (3, 3), activation='relu', padding='same')(up0)
up0 = Conv2D(32, (3, 3), activation='relu', padding='same')(up0)
# 256
classify = Conv2D(num_classes, (1, 1), activation='sigmoid')(up0)
model = Model(inputs=inputs, outputs=classify)
model.compile(optimizer=Adam(lr=learn_rate), loss=loss_func, metrics=[dice_coef])
return model
def get_unet_512(input_shape=(512, 512, 1),
num_classes=1, learn_rate=1e-4, loss_func='binary_crossentropy', metric_list=[dice_coef]):
inputs = Input(shape=input_shape)
# 512
down0a = Conv2D(16, (3, 3), activation='relu', padding='same')(inputs)
down0a = Conv2D(16, (3, 3), activation='relu', padding='same')(down0a)
down0a_pool = MaxPooling2D((2, 2))(down0a)
# 256
down0 = Conv2D(32, (3, 3), activation='relu', padding='same')(down0a_pool)
down0 = Conv2D(32, (3, 3), activation='relu', padding='same')(down0)
down0_pool = MaxPooling2D((2, 2))(down0)
# 128
down1 = Conv2D(64, (3, 3), activation='relu', padding='same')(down0_pool)
down1 = Conv2D(64, (3, 3), activation='relu', padding='same')(down1)
down1_pool = MaxPooling2D((2, 2))(down1)
# 64
down2 = Conv2D(128, (3, 3), activation='relu', padding='same')(down1_pool)
down2 = Conv2D(128, (3, 3), activation='relu', padding='same')(down2)
down2_pool = MaxPooling2D((2, 2))(down2)
# 32
down3 = Conv2D(256, (3, 3), activation='relu', padding='same')(down2_pool)
down3 = Conv2D(256, (3, 3), activation='relu', padding='same')(down3)
down3_pool = MaxPooling2D((2, 2))(down3)
# 16
down4 = Conv2D(512, (3, 3), activation='relu', padding='same')(down3_pool)
down4 = Conv2D(512, (3, 3), activation='relu', padding='same')(down4)
down4_pool = MaxPooling2D((2, 2))(down4)
# 8
center = Conv2D(1024, (3, 3), activation='relu', padding='same')(down4_pool)
center = Conv2D(1024, (3, 3), activation='relu', padding='same')(center)
# center
up4 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(center)
up4 = concatenate([down4, up4], axis=3)
up4 = Conv2D(512, (3, 3), activation='relu', padding='same')(up4)
up4 = Conv2D(512, (3, 3), activation='relu', padding='same')(up4)
# 16
up3 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(up4)
up3 = concatenate([down3, up3], axis=3)
up3 = Conv2D(256, (3, 3), activation='relu', padding='same')(up3)
up3 = Conv2D(256, (3, 3), activation='relu', padding='same')(up3)
# 32
up2 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(up3)
up2 = concatenate([down2, up2], axis=3)
up2 = Conv2D(128, (3, 3), activation='relu', padding='same')(up2)
up2 = Conv2D(128, (3, 3), activation='relu', padding='same')(up2)
# 64
up1 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(up2)
up1 = concatenate([down1, up1], axis=3)
up1 = Conv2D(64, (3, 3), activation='relu', padding='same')(up1)
up1 = Conv2D(64, (3, 3), activation='relu', padding='same')(up1)
# 128
up0 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(up1)
up0 = concatenate([down0, up0], axis=3)
up0 = Conv2D(32, (3, 3), activation='relu', padding='same')(up0)
up0 = Conv2D(32, (3, 3), activation='relu', padding='same')(up0)
# 256
up0a = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(up0)
up0a = concatenate([down0a, up0a], axis=3)
up0a = Conv2D(16, (3, 3), activation='relu', padding='same')(up0a)
up0a = Conv2D(16, (3, 3), activation='relu', padding='same')(up0a)
# 512
classify = Conv2D(num_classes, (1, 1), activation='sigmoid')(up0a)
model = Model(inputs=inputs, outputs=classify)
model.compile(optimizer=Adam(lr=learn_rate), loss=loss_func, metrics=[dice_coef])
return model
def get_unet_1024(input_shape=(1024, 1024, 1),
num_classes=1, learn_rate=1e-4, loss_func='binary_crossentropy', metric_list=[dice_coef]):
inputs = Input(shape=input_shape)
# 1024
down0b = Conv2D(8, (3, 3), activation='relu', padding='same')(inputs)
down0b = Conv2D(8, (3, 3), activation='relu', padding='same')(down0b)
down0b_pool = MaxPooling2D((2, 2))(down0b)
# 512
down0a = Conv2D(16, (3, 3), activation='relu', padding='same')(down0b_pool)
down0a = Conv2D(16, (3, 3), activation='relu', padding='same')(down0a)
down0a_pool = MaxPooling2D((2, 2))(down0a)
# 256
down0 = Conv2D(32, (3, 3), activation='relu', padding='same')(down0a_pool)
down0 = Conv2D(32, (3, 3), activation='relu', padding='same')(down0)
down0_pool = MaxPooling2D((2, 2))(down0)
# 128
down1 = Conv2D(64, (3, 3), activation='relu', padding='same')(down0_pool)
down1 = Conv2D(64, (3, 3), activation='relu', padding='same')(down1)
down1_pool = MaxPooling2D((2, 2))(down1)
# 64
down2 = Conv2D(128, (3, 3), activation='relu', padding='same')(down1_pool)
down2 = Conv2D(128, (3, 3), activation='relu', padding='same')(down2)
down2_pool = MaxPooling2D((2, 2))(down2)
# 32
down3 = Conv2D(256, (3, 3), activation='relu', padding='same')(down2_pool)
down3 = Conv2D(256, (3, 3), activation='relu', padding='same')(down3)
down3_pool = MaxPooling2D((2, 2))(down3)
# 16
down4 = Conv2D(512, (3, 3), activation='relu', padding='same')(down3_pool)
down4 = Conv2D(512, (3, 3), activation='relu', padding='same')(down4)
down4_pool = MaxPooling2D((2, 2))(down4)
# 8
center = Conv2D(1024, (3, 3), activation='relu', padding='same')(down4_pool)
center = Conv2D(1024, (3, 3), activation='relu', padding='same')(center)
# center
up4 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(center)
up4 = concatenate([down4, up4], axis=3)
up4 = Conv2D(512, (3, 3), activation='relu', padding='same')(up4)
up4 = Conv2D(512, (3, 3), activation='relu', padding='same')(up4)
# 16
up3 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(up4)
up3 = concatenate([down3, up3], axis=3)
up3 = Conv2D(256, (3, 3), activation='relu', padding='same')(up3)
up3 = Conv2D(256, (3, 3), activation='relu', padding='same')(up3)
# 32
up2 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(up3)
up2 = concatenate([down2, up2], axis=3)
up2 = Conv2D(128, (3, 3), activation='relu', padding='same')(up2)
up2 = Conv2D(128, (3, 3), activation='relu', padding='same')(up2)
# 64
up1 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(up2)
up1 = concatenate([down1, up1], axis=3)
up1 = Conv2D(64, (3, 3), activation='relu', padding='same')(up1)
up1 = Conv2D(64, (3, 3), activation='relu', padding='same')(up1)
# 128
up0 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(up1)
up0 = concatenate([down0, up0], axis=3)
up0 = Conv2D(32, (3, 3), activation='relu', padding='same')(up0)
up0 = Conv2D(32, (3, 3), activation='relu', padding='same')(up0)
# 256
up0a = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(up0)
up0a = concatenate([down0a, up0a], axis=3)
up0a = Conv2D(16, (3, 3), activation='relu', padding='same')(up0a)
up0a = Conv2D(16, (3, 3), activation='relu', padding='same')(up0a)
# 512
up0b = Conv2DTranspose(8, (2, 2), strides=(2, 2), padding='same')(up0a)
up0b = concatenate([down0b, up0b], axis=3)
up0b = Conv2D(8, (3, 3), activation='relu', padding='same')(up0b)
up0b = Conv2D(8, (3, 3), activation='relu', padding='same')(up0b)
# 1024
classify = Conv2D(num_classes, (1, 1), activation='sigmoid')(up0b)
model = Model(inputs=inputs, outputs=classify)
model.compile(optimizer=Adam(lr=learn_rate), loss=loss_func, metrics=[dice_coef])
return model