-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcore.py
337 lines (321 loc) · 15.4 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import numpy as np
import gurobipy as gb
import Disturb as db
def make_Bdc(market):
Nb = market.Nb
Nl = market.Nl
Cft = np.zeros([Nl, Nb])
Bf = np.zeros([Nl, Nb])
Bbus = np.zeros([Nb, Nb])
Lines = market.Line
for idx, l in enumerate(Lines):
status = l.status
Bf[idx, int(l.fbus - 1)] = status / l.x
Bf[idx, int(l.tbus - 1)] = -status / l.x
Cft[idx, int(l.fbus - 1)] = 1
Cft[idx, int(l.tbus - 1)] = -1
Bbus = np.matmul(np.transpose(Cft), Bf)
market.Bbus = Bbus
market.Bf = Bf
market.Cft = Cft
def make_PTDF(market):
Nb = market.Nb
Nl = market.Nl
sw = market.sw
nosw = range(Nb)
nosw = np.setdiff1d(nosw, sw - 1)
Bf = market.Bf
Bbus = market.Bbus
PTDF = np.matmul(Bf[:, nosw], np.linalg.inv(Bbus[np.ix_(nosw, nosw)]))
PTDF = np.insert(PTDF, int(sw - 1), 0, axis=1)
market.PTDF = PTDF
def ecnomic_dispatch(market):
make_Bdc(market)
make_PTDF(market)
opt_model = gb.Model(str(market.Type) + 'Ecnomic_dispatch')
pg = {}
load_level = 0
obj = 0
gen_bus = np.zeros([len(market.genco), 1])
# add pg cap
for idx, gen in enumerate(market.genco):
gen_bus[idx] = gen.bus
pg[idx] = opt_model.addVar(name='Power generation' + str(idx), vtype=gb.GRB.CONTINUOUS,
ub=gen.pmax * gen.status, lb=gen.pmin * gen.status)
if gen.bid_type == 2:
cost = gen.bids
obj += pg[idx] * cost
elif gen.bid_type == 3:
cost = gen.bids
obj += (pg[idx] * pg[idx]) * cost[0] + pg[idx] * cost[1] + cost[2]
# add line flow cons
line_flow = {}
for line_idx, line in enumerate(market.Line):
line_flow[line_idx] = 0
for bus_idx in range(market.Nb):
load = market.load[bus_idx].P
line_flow[line_idx] = line_flow[line_idx] + market.PTDF[line_idx, bus_idx] * (-load)
line_flow[line_idx] = line_flow[line_idx] + market.PTDF[line_idx, bus_idx] * sum([pg[x] for x in sum(np.where(gen_bus == bus_idx + 1))])
opt_model.addConstr(line_flow[line_idx] <= line.rating, name='TC p' + str(line_idx))
opt_model.addConstr(line_flow[line_idx] >= -line.rating, name='TC n' + str(line_idx))
# add power balance
load_level = sum([np.sum(market.load[i].P) for i in range(market.load.__len__())])
gen_level = sum([np.sum(pg[i]) for i in range(market.Ng)])
opt_model.addConstr(gen_level == load_level, name="balance")
opt_model.setObjective(obj, gb.GRB.MINIMIZE)
opt_model.optimize()
#opt_model.write('math_model.lp')
for idx, gen in enumerate(market.genco):
gen.opt_pg = pg[idx].X
for idx, line in enumerate(market.Line):
line.opt_fl = line_flow[idx].getValue()
# LMP and dispatched settlements
lamda = opt_model.getConstrByName('balance').Pi
LMP = np.zeros([1, market.Nb])
for b, ld in enumerate(market.load):
LMP[0, b] = lamda
for l, line in enumerate(market.Line):
ng = opt_model.getConstrByName('TC n' + str(l)).Pi
po = opt_model.getConstrByName('TC p' + str(l)).Pi
LMP[0, b] += market.PTDF[l, b]*(ng-po)
market.LMP = LMP
for gen in market.genco:
gen.revenue = market.LMP[0, int(gen.bus-1)]*gen.opt_pg
for idx, ld in enumerate(market.load):
ld.revenue = -market.LMP[0, idx]*ld.P
del opt_model
def multi_ED(market):
make_Bdc(market)
make_PTDF(market)
for t in range(market.N_T):
opt_model = gb.Model(str(market.Type) + 'Ecnomic_dispatch')
pg = {}
load_level = 0
obj = 0
gen_bus = np.zeros([len(market.genco), 1])
# add pg cap
for idx, gen in enumerate(market.genco):
gen_bus[idx] = gen.bus
pg[idx] = opt_model.addVar(name='Power generation' + str(idx), vtype=gb.GRB.CONTINUOUS)
if not gen.T_status:
opt_model.addConstr(pg[idx] <= gen.pmax * gen.status, name='T_' + str(t) + 'Capacity_max' + str(idx))
opt_model.addConstr(pg[idx] >= gen.pmin * gen.status, name='T_' + str(t) + 'Capacity_min' + str(idx))
else:
opt_model.addConstr(pg[idx] <= gen.pmax * gen.T_status[t], name='T_' + str(t) + 'Capacity_max' + str(idx))
opt_model.addConstr(pg[idx] >= gen.pmin * gen.T_status[t], name='T_' + str(t) + 'Capacity_min' + str(idx))
if gen.bid_type == 2:
cost = gen.bids
obj += pg[idx] * cost
elif gen.bid_type == 3:
cost = gen.bids
obj += (pg[idx] * pg[idx]) * cost[0] + pg[idx] * cost[1] + cost[2]
# add line flow cons
line_flow = {}
for line_idx, line in enumerate(market.Line):
line_flow[line_idx] = 0
for bus_idx in range(market.Nb):
load = market.load[bus_idx].T_P[t]
line_flow[line_idx] = line_flow[line_idx] + market.PTDF[line_idx, bus_idx] * (-load)
line_flow[line_idx] = line_flow[line_idx] + market.PTDF[line_idx, bus_idx] *\
sum([pg[x] for x in sum(np.where(gen_bus == bus_idx + 1))])
opt_model.addConstr(line_flow[line_idx] <= line.rating, name='TC p' + str(line_idx))
opt_model.addConstr(line_flow[line_idx] >= -line.rating, name='TC n' + str(line_idx))
# add power balance
load_level = market.load_level
gen_level = sum([np.sum(pg[i]) for i in range(market.Ng)])
opt_model.addConstr(gen_level == load_level[t], name="balance")
opt_model.setObjective(obj, gb.GRB.MINIMIZE)
opt_model.optimize()
if opt_model.Status == 2:
for idx, gen in enumerate(market.genco):
gen.T_pg.append(pg[idx].X)
for idx, line in enumerate(market.Line):
line.T_Lf.append(line_flow[idx].getValue())
# LMP and dispatched settlements
lamda = opt_model.getConstrByName('balance').Pi
LMP = np.zeros([1, market.Nb])
for b, ld in enumerate(market.load):
LMP[0, b] = lamda
for l, line in enumerate(market.Line):
ng = opt_model.getConstrByName('TC n' + str(l)).Pi
po = opt_model.getConstrByName('TC p' + str(l)).Pi
LMP[0, b] += market.PTDF[l, b]*(ng-po)
market.LMP = LMP
market.T_LMP.append(LMP)
for gen in market.genco:
gen.T_revenue.append(LMP[0, int(gen.bus-1)]*gen.T_pg[t])
for idx, ld in enumerate(market.load):
ld.T_revenue.append(-LMP[0, idx]*ld.P)
else:
for idx, gen in enumerate(market.genco):
gen.T_pg.append([])
gen.T_revenue.append([])
for idx, line in enumerate(market.Line):
line.T_Lf.append([])
for idx, ld in enumerate(market.load):
ld.T_revenue.append([])
market.T_LMP.append([])
market.LMP = []
del opt_model
def unit_commitment(market):
make_Bdc(market)
make_PTDF(market)
opt_model = gb.Model(str(market.Type) + 'Unit Commitment')
pg = {}
status = {}
comm_up = {}
comm_down = {}
obj = 0
for t in range(market.N_T):
gen_bus = np.zeros([len(market.genco), 1])
# add pg cap and obj
for idx, gen in enumerate(market.genco):
gen_bus[idx] = gen.bus
pg[t, idx] = opt_model.addVar(name='T_' + str(t) + 'P_g' + str(idx), vtype=gb.GRB.CONTINUOUS)
status[t, idx] = opt_model.addVar(name='T_' + str(t) + 'Status' + str(idx), vtype=gb.GRB.BINARY)
comm_up[t, idx] = opt_model.addVar(name='T_' + str(t) + 'comm_up' + str(idx), vtype=gb.GRB.BINARY)
comm_down[t, idx] = opt_model.addVar(name='T_' + str(t) + 'comm_down' + str(idx), vtype=gb.GRB.BINARY)
# commit key: if 1 then 0/1; if 2 then 1 Must_run_unit
if gen.commit_key == 2:
opt_model.addConstr(status[t, idx] == 1)
elif gen.commit_key == 3:
opt_model.addConstr(status[t, idx] == 0)
# min down time
if t <= gen.min_dowm-1:
if gen.status == 0:
opt_model.addConstr(status[t, idx] == 0)
elif t >= gen.min_dowm:
if t != 0:
opt_model.addConstr((sum([comm_up[t-i, idx] for i in range(gen.min_dowm-1)])) <= 1-status[t-gen.min_dowm, idx])
if t <= gen.min_up-2:
if gen.status == 1:
opt_model.addConstr(status[t, idx] == 1)
elif t >= gen.min_up-1:
if t != 0:
opt_model.addConstr((sum([comm_up[t-i, idx] for i in range(gen.min_up-1)])) <= status[t, idx])
# state transition constraint
if t == 0:
opt_model.addConstr(status[t, idx] - gen.status == comm_up[t, idx]-comm_down[t, idx])
else:
opt_model.addConstr(status[t, idx] - status[t-1, idx] == comm_up[t, idx]-comm_down[t, idx])
# ramp
if t >= 1:
opt_model.addConstr(pg[t, idx] - pg[t-1, idx] <= gen.ramp_up, #gen.T_ramp_up[t],
name='T_' + str(t) + 'ramp_up' + str(idx))
opt_model.addConstr(pg[t, idx] - pg[t-1, idx] >= -gen.ramp_down, #gen.T_ramp_down[t],
name='T_' + str(t) + 'ramp_down' + str(idx))
# power capacity
opt_model.addConstr(pg[t, idx] <= gen.pmax*status[t, idx], name='T_' + str(t) + 'Capacity_max' + str(idx))
opt_model.addConstr(pg[t, idx] >= gen.pmin*status[t, idx], name='T_' + str(t) + 'Capacity_min' + str(idx))
# obj
cost = gen.bids
no_load_c = 0 #gen.T_no_load[t]
start_up_c = 0 #gen.T_no_load[t]
obj += pg[t, idx]*cost+status[t, idx]*no_load_c+comm_up[t, idx]*gen.start_up+comm_down[t, idx]*gen.shut_down
# add line flow cons
line_flow = {}
for line_idx, line in enumerate(market.Line):
line_flow[t, line_idx] = 0
for bus_idx in range(market.Nb):
load = market.load[bus_idx].T_P[t]
line_flow[t, line_idx] = line_flow[t, line_idx] + market.PTDF[line_idx, bus_idx] * (-load)
line_flow[t, line_idx] = line_flow[t, line_idx] + market.PTDF[line_idx, bus_idx] *\
sum([pg[t, x] for x in sum(np.where(gen_bus == bus_idx + 1))])
opt_model.addConstr(line_flow[t, line_idx] <= line.rating, name='T_' + str(t) + 'TC_p' + str(line_idx))
opt_model.addConstr(line_flow[t, line_idx] >= -line.rating, name='T_' + str(t) + 'TC_n' + str(line_idx))
# add power balance
load_level = market.load_level
gen_level = sum([np.sum(pg[t, i]) for i in range(market.Ng)])
opt_model.addConstr(gen_level == load_level[t], name='T_' + str(t) + 'balance')
opt_model.update()
opt_model.setObjective(obj, gb.GRB.MINIMIZE)
opt_model.optimize()
for idx, gen in enumerate(market.genco):
for t in range(market.N_T):
gen.T_status.append(int(status[t, idx].x))
market.UC_result = 1
def real_time(market):
for t in range(market.N_T):
db.ex_ante_attack(market)
for bus_idx in range(market.Nb):
market.load[bus_idx].P = market.load[bus_idx].T_P[t]
ecnomic_dispatch(market)
P_cog_list = []
N_cog_list = []
for line_idx, line in enumerate(market.Line):
if abs(line.opt_fl - line.rating) <= 0.00001:
P_cog_list.append(line_idx)
if abs(line.opt_fl+line.rating) <= 0.00001:
N_cog_list.append(line_idx)
db.ex_post_attack(market)
d_pg_down = -2
d_pg_up = 0.01
opt_model = gb.Model(str(market.Type) + 'Ex_post_pricing')
pg = {}
obj = 0
gen_bus = np.zeros([len(market.genco), 1])
# add pg cap
for idx, gen in enumerate(market.genco):
gen_bus[idx] = gen.bus
if gen.opt_pg >= -d_pg_down:
pg[idx] = opt_model.addVar(name='Pg' + str(idx), vtype=gb.GRB.CONTINUOUS, lb=d_pg_down, ub=d_pg_up)
else:
pg[idx] = opt_model.addVar(name='Pg' + str(idx), vtype=gb.GRB.CONTINUOUS, lb=-gen.opt_pg, ub=d_pg_up)
if gen.bid_type == 2:
cost = gen.bids
obj += pg[idx] * cost
elif gen.bid_type == 3:
cost = gen.bids
obj += (pg[idx] * pg[idx]) * cost[0] + pg[idx] * cost[1] + cost[2]
# add line flow cons
line_flow = {}
for line_idx, line in enumerate(market.Line):
if line_idx in P_cog_list:
line_flow[line_idx] = 0
for bus_idx in range(market.Nb):
line_flow[line_idx] = line_flow[line_idx] + market.PTDF[line_idx, bus_idx] *\
sum([pg[x] for x in sum(np.where(gen_bus == bus_idx + 1))])
opt_model.addConstr(line_flow[line_idx] <= 0, name='TC p' + str(line_idx))
if line_idx in N_cog_list:
line_flow[line_idx] = 0
for bus_idx in range(market.Nb):
line_flow[line_idx] = line_flow[line_idx] + market.PTDF[line_idx, bus_idx] * \
sum([pg[x] for x in sum(np.where(gen_bus == bus_idx + 1))])
opt_model.addConstr(line_flow[line_idx] >= 0, name='TC n' + str(line_idx))
# add power balance
gen_level = sum([np.sum(pg[i]) for i in range(market.Ng)])
opt_model.addConstr(gen_level == 0, name="balance")
opt_model.setObjective(obj, gb.GRB.MINIMIZE)
opt_model.optimize()
if opt_model.Status == 2:
# LMP and dispatched settlements
lamda = opt_model.getConstrByName('balance').Pi
LMP = np.zeros([1, market.Nb])
for b, ld in enumerate(market.load):
LMP[0, b] = lamda
po = 0
ng = 0
for l, line in enumerate(market.Line):
if l in P_cog_list:
po = opt_model.getConstrByName('TC p' + str(l)).Pi
LMP[0, b] += market.PTDF[l, b] * (-po)
if l in N_cog_list:
ng = opt_model.getConstrByName('TC n' + str(l)).Pi
LMP[0, b] += market.PTDF[l, b] * ng
market.LMP = LMP
market.RT_LMP.append(LMP)
for gen in market.genco:
gen.T_revenue.append(LMP[0, int(gen.bus-1)]*gen.T_pg[t])
for idx, ld in enumerate(market.load):
ld.T_revenue.append(-LMP[0, idx]*ld.P)
else:
for idx, gen in enumerate(market.genco):
gen.T_pg.append([])
gen.T_revenue.append([])
for idx, line in enumerate(market.Line):
line.T_Lf.append([])
for idx, ld in enumerate(market.load):
ld.T_revenue.append([])
market.RT_LMP.append([])
market.LMP = []
del opt_model