forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
80 lines (69 loc) · 2.68 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlenlp.datasets import MapDataset
def load_dict(dict_path):
vocab = {}
i = 0
with open(dict_path, 'r', encoding='utf-8') as fin:
for line in fin:
key = line.strip('\n')
vocab[key] = i
i += 1
return vocab
def load_dataset(datafiles):
def read(data_path):
with open(data_path, 'r', encoding='utf-8') as fp:
next(fp) # Skip header
for line in fp.readlines():
words, labels = line.strip('\n').split('\t')
words = words.split('\002')
labels = labels.split('\002')
yield words, labels
if isinstance(datafiles, str):
return MapDataset(list(read(datafiles)))
elif isinstance(datafiles, list) or isinstance(datafiles, tuple):
return [MapDataset(list(read(datafile))) for datafile in datafiles]
def parse_decodes(sentences, predictions, lengths, label_vocab):
"""Parse the padding result
Args:
sentences (list): the tagging sentences.
predictions (list): the prediction tags.
lengths (list): the valid length of each sentence.
label_vocab (dict): the label vocab.
Returns:
outputs (list): the formatted output.
"""
predictions = [x for batch in predictions for x in batch]
lengths = [x for batch in lengths for x in batch]
id_label = dict(zip(label_vocab.values(), label_vocab.keys()))
outputs = []
for idx, end in enumerate(lengths):
sent = sentences[idx][:end]
tags = [id_label[x] for x in predictions[idx][:end]]
sent_out = []
tags_out = []
words = ""
for s, t in zip(sent, tags):
if t.endswith('-B') or t == 'O':
if len(words):
sent_out.append(words)
tags_out.append(t.split('-')[0])
words = s
else:
words += s
if len(sent_out) < len(tags_out):
sent_out.append(words)
outputs.append(''.join(
[str((s, t)) for s, t in zip(sent_out, tags_out)]))
return outputs