-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy pathsac_v2_multiprocess_multi_gpu.py
677 lines (545 loc) · 26.9 KB
/
sac_v2_multiprocess_multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
'''
Soft Actor-Critic version 2
using target Q instead of V net: 2 Q net, 2 target Q net, 1 policy net
add alpha loss compared with version 1
paper: https://arxiv.org/pdf/1812.05905.pdf
'''
import math
import random
import gym
import numpy as np
import torch
torch.multiprocessing.set_start_method('forkserver', force=True)
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from IPython.display import clear_output
import matplotlib.pyplot as plt
from reacher import Reacher
import argparse
import torch.multiprocessing as mp
from multiprocessing import Process
from multiprocessing.managers import BaseManager
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
class SharedAdam(optim.Optimizer):
r"""Implements Adam algorithm.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super(SharedAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(SharedAdam, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
state = self.state[p]
### ADD
device = p.device
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
### ADD
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
if group['weight_decay'] != 0:
grad.add_(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
return loss
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = int((self.position + 1) % self.capacity) # as a ring buffer
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack,
zip(*batch)) # stack for each element
'''
the * serves as unpack: sum(a,b) <=> batch=(a,b), sum(*batch) ;
zip: a=[1,2], b=[2,3], zip(a,b) => [(1, 2), (2, 3)] ;
the map serves as mapping the function on each list element: map(square, [2,3]) => [4,9] ;
np.stack((1,2)) => array([1, 2])
'''
return state, action, reward, next_state, done
def __len__(
self): # cannot work in multiprocessing case, len(replay_buffer) is not available in proxy of manager!
return len(self.buffer)
def get_length(self):
return len(self.buffer)
class NormalizedActions(gym.ActionWrapper):
def _action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def _reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action
class ValueNetwork(nn.Module):
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, hidden_dim)
self.linear4 = nn.Linear(hidden_dim, 1)
# weights initialization
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = self.linear4(x)
return x
class SoftQNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):
super(SoftQNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, 1)
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat([state, action], 1) # the dim 0 is number of samples
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = self.linear4(x)
return x
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, action_range=1., init_w=3e-3, log_std_min=-20, log_std_max=2):
super(PolicyNetwork, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, hidden_size)
self.mean_linear = nn.Linear(hidden_size, num_actions)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
self.action_range = action_range
self.num_actions = num_actions
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = F.relu(self.linear4(x))
mean = (self.mean_linear(x))
# mean = F.leaky_relu(self.mean_linear(x))
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
return mean, log_std
def evaluate(self, state, epsilon=1e-6):
'''
generate sampled action with state as input wrt the policy network;
'''
mean, log_std = self.forward(state)
std = log_std.exp() # no clip in evaluation, clip affects gradients flow
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action_0 = torch.tanh(mean + std * z.cuda()) # TanhNormal distribution as actions; reparameterization trick
action = self.action_range * action_0
log_prob = Normal(mean, std).log_prob(mean + std * z.cuda()) - torch.log(
1. - action_0.pow(2) + epsilon) - np.log(self.action_range)
# both dims of normal.log_prob and -log(1-a**2) are (N,dim_of_action);
# the Normal.log_prob outputs the same dim of input features instead of 1 dim probability,
# needs sum up across the features dim to get 1 dim prob; or else use Multivariate Normal.
log_prob = log_prob.sum(dim=1, keepdim=True)
return action, log_prob, z, mean, log_std
def get_action(self, state, deterministic):
state = torch.FloatTensor(state).unsqueeze(0).cuda()
# print(state)
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample(mean.shape).cuda()
action = self.action_range * torch.tanh(mean + std * z)
action = self.action_range * torch.tanh(mean).detach().cpu().numpy()[0] if deterministic else \
action.detach().cpu().numpy()[0]
return action
def sample_action(self, ):
a = torch.FloatTensor(self.num_actions).uniform_(-1, 1)
return self.action_range * a.numpy()
class Alpha(nn.Module):
''' nn.Module class of alpha variable, for the usage of parallel on gpus '''
def __init__(self):
super(Alpha, self).__init__()
self.log_alpha=torch.nn.Parameter(torch.zeros(1)) #initialized as [0.]: alpha->[1.]
def forward(self):
return self.log_alpha
class SAC_Trainer():
def __init__(self, replay_buffer, hidden_dim, action_range):
self.replay_buffer = replay_buffer
self.action_dim = action_dim
self.soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim)
self.soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim)
self.target_soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim)
self.target_soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim)
self.policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim, action_range)
self.log_alpha = Alpha()
print('Soft Q Network (1,2): ', self.soft_q_net1)
print('Policy Network: ', self.policy_net)
for target_param, param in zip(self.target_soft_q_net1.parameters(),
self.soft_q_net1.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(self.target_soft_q_net2.parameters(),
self.soft_q_net2.parameters()):
target_param.data.copy_(param.data)
self.soft_q_criterion1 = nn.MSELoss()
self.soft_q_criterion2 = nn.MSELoss()
soft_q_lr = 3e-4
policy_lr = 3e-4
alpha_lr = 3e-4
self.soft_q_optimizer1 = SharedAdam(self.soft_q_net1.parameters(), lr=soft_q_lr)
self.soft_q_optimizer2 = SharedAdam(self.soft_q_net2.parameters(), lr=soft_q_lr)
self.policy_optimizer = SharedAdam(self.policy_net.parameters(), lr=policy_lr)
self.alpha_optimizer = SharedAdam(self.log_alpha.parameters(), lr=alpha_lr)
def to_cuda(self): # copy to specified gpu
self.soft_q_net1 = self.soft_q_net1.cuda()
self.soft_q_net2 = self.soft_q_net2.cuda()
self.target_soft_q_net1 = self.target_soft_q_net1.cuda()
self.target_soft_q_net2 = self.target_soft_q_net2.cuda()
self.policy_net = self.policy_net.cuda()
self.log_alpha = self.log_alpha.cuda()
def update(self, batch_size, reward_scale=10., auto_entropy=True, target_entropy=-2, gamma=0.99,
soft_tau=1e-2):
state, action, reward, next_state, done = self.replay_buffer.sample(batch_size)
# print('sample:', state, action, reward, done)
state = torch.FloatTensor(state).cuda()
next_state = torch.FloatTensor(next_state).cuda()
action = torch.FloatTensor(action).cuda()
reward = torch.FloatTensor(reward).unsqueeze(1).cuda() # reward is single value, unsqueeze() to add one dim to be [reward] at the sample dim;
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).cuda()
predicted_q_value1 = self.soft_q_net1(state, action)
predicted_q_value2 = self.soft_q_net2(state, action)
new_action, log_prob, z, mean, log_std = self.policy_net.evaluate(state)
new_next_action, next_log_prob, _, _, _ = self.policy_net.evaluate(next_state)
reward = reward_scale * (reward - reward.mean(dim=0)) / (reward.std(
dim=0) + 1e-6) # normalize with batch mean and std; plus a small number to prevent numerical problem
# Updating alpha wrt entropy
# alpha = 0.0
# trade-off between exploration (max entropy) and exploitation (max Q)
if auto_entropy is True:
alpha_loss = -(self.log_alpha() * (log_prob - 1.0 * self.action_dim).detach()).mean() # self.log_alpha as forward function to get value
# print('alpha loss: ',alpha_loss)
self.alpha_optimizer.zero_grad()
alpha_loss.backward()
self.alpha_optimizer.step()
self.alpha = self.log_alpha().exp()
else:
self.alpha = 1.
alpha_loss = 0
# print(self.alpha)
# Training Q Function
target_q_min = torch.min(self.target_soft_q_net1(next_state, new_next_action),
self.target_soft_q_net2(next_state,
new_next_action)) - self.alpha * next_log_prob
target_q_value = reward + (1 - done) * gamma * target_q_min # if done==1, only reward
q_value_loss1 = self.soft_q_criterion1(predicted_q_value1,
target_q_value.detach()) # detach: no gradients for the variable
q_value_loss2 = self.soft_q_criterion2(predicted_q_value2, target_q_value.detach())
self.soft_q_optimizer1.zero_grad()
q_value_loss1.backward()
self.soft_q_optimizer1.step()
self.soft_q_optimizer2.zero_grad()
q_value_loss2.backward()
self.soft_q_optimizer2.step()
# Training Policy Function
predicted_new_q_value = torch.min(self.soft_q_net1(state, new_action),
self.soft_q_net2(state, new_action))
policy_loss = (self.alpha * log_prob - predicted_new_q_value).mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
# print('q loss: ', q_value_loss1, q_value_loss2)
# print('policy loss: ', policy_loss )
# Soft update the target value net
for target_param, param in zip(self.target_soft_q_net1.parameters(),
self.soft_q_net1.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
for target_param, param in zip(self.target_soft_q_net2.parameters(),
self.soft_q_net2.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return predicted_new_q_value.mean()
def save_model(self, path):
torch.save(self.soft_q_net1.state_dict(),
path + '_q1') # have to specify different path name here!
torch.save(self.soft_q_net2.state_dict(), path + '_q2')
torch.save(self.policy_net.state_dict(), path + '_policy')
def load_model(self, path):
self.soft_q_net1.load_state_dict(torch.load(path + '_q1', map_location='cuda:0')) # map model on single gpu for testing
self.soft_q_net2.load_state_dict(torch.load(path + '_q2', map_location='cuda:0'))
self.policy_net.load_state_dict(torch.load(path + '_policy', map_location='cuda:0'))
self.soft_q_net1.eval()
self.soft_q_net2.eval()
self.policy_net.eval()
def worker(id, sac_trainer, ENV, rewards_queue, replay_buffer, max_episodes, max_steps, batch_size,
explore_steps, \
update_itr, action_itr, AUTO_ENTROPY, DETERMINISTIC, hidden_dim, model_path):
'''
the function for sampling with multi-processing
'''
with torch.cuda.device(id % torch.cuda.device_count()):
sac_trainer.to_cuda()
print(sac_trainer, replay_buffer) # sac_tainer are not the same, but all networks and optimizers in it are the same; replay buffer is the same one.
if ENV == 'Reacher':
NUM_JOINTS=2
LINK_LENGTH=[200, 140]
INI_JOING_ANGLES=[0.1, 0.1]
SCREEN_SIZE=1000
SPARSE_REWARD=False
SCREEN_SHOT=False
action_range = 10.0
env=Reacher(screen_size=SCREEN_SIZE, num_joints=NUM_JOINTS, link_lengths = LINK_LENGTH, \
ini_joint_angles=INI_JOING_ANGLES, target_pos = [369,430], render=True, change_goal=False)
action_dim = env.num_actions
state_dim = env.num_observations
elif ENV == 'Pendulum':
env = NormalizedActions(gym.make("Pendulum-v0"))
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_range=1.
frame_idx=0
rewards=[]
# training loop
for eps in range(max_episodes):
episode_reward = 0
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
elif ENV == 'Pendulum':
state = env.reset()
for step in range(max_steps):
if frame_idx > explore_steps:
action = sac_trainer.policy_net.get_action(state, deterministic = DETERMINISTIC)
else:
action = sac_trainer.policy_net.sample_action()
try:
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
elif ENV == 'Pendulum':
next_state, reward, done, _ = env.step(action)
env.render()
except KeyboardInterrupt:
print('Finished')
sac_trainer.save_model(model_path)
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
frame_idx += 1
# if len(replay_buffer) > batch_size:
if replay_buffer.get_length() > batch_size:
for i in range(update_itr):
_ = sac_trainer.update(batch_size, reward_scale=10., auto_entropy=AUTO_ENTROPY,
target_entropy=-1. * action_dim)
if eps % 10 == 0 and eps > 0:
# plot(rewards, id)
sac_trainer.save_model(model_path)
if done:
break
print('Worker: ', id, '| Episode: ', eps, '| Episode Reward: ', episode_reward)
# if len(rewards) == 0:
# rewards.append(episode_reward)
# else:
# rewards.append(rewards[-1] * 0.9 + episode_reward * 0.1)
rewards_queue.put(episode_reward)
sac_trainer.save_model(model_path)
def ShareParameters(adamoptim):
''' share parameters of Adamoptimizers for multiprocessing '''
for group in adamoptim.param_groups:
for p in group['params']:
state = adamoptim.state[p]
# initialize: have to initialize here, or else cannot find
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p.data)
state['exp_avg_sq'] = torch.zeros_like(p.data)
# share in memory
state['exp_avg'].share_memory_()
state['exp_avg_sq'].share_memory_()
def plot(rewards):
clear_output(True)
plt.figure(figsize=(20, 5))
plt.plot(rewards)
plt.savefig('sac_v2_multi.png')
# plt.show()
plt.clf()
if __name__ == '__main__':
replay_buffer_size = 1e6
# the replay buffer is a class, have to use torch manager to make it a proxy for sharing across processes
BaseManager.register('ReplayBuffer', ReplayBuffer)
manager = BaseManager()
manager.start()
replay_buffer = manager.ReplayBuffer(
replay_buffer_size) # share the replay buffer through manager
# choose env
ENV = ['Pendulum', 'Reacher'][0]
if ENV == 'Reacher':
NUM_JOINTS=2
LINK_LENGTH=[200, 140]
SCREEN_SIZE=1000
SPARSE_REWARD=False
SCREEN_SHOT=False
action_range = 10.0
env=Reacher(screen_size=SCREEN_SIZE, num_joints=NUM_JOINTS, link_lengths = LINK_LENGTH, \
ini_joint_angles=INI_JOING_ANGLES, target_pos = [369,430], render=True, change_goal=False)
action_dim = env.num_actions
state_dim = env.num_observations
elif ENV == 'Pendulum':
env = NormalizedActions(gym.make("Pendulum-v0"))
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_range=1.
# hyper-parameters for RL training, no need for sharing across processes
max_episodes = 1000
max_steps = 20 if ENV == 'Reacher' else 150 # Pendulum needs 150 steps per episode to learn well, cannot handle 20
explore_steps = 0 # for random action sampling in the beginning of training
batch_size = 640
update_itr = 1
action_itr = 3
AUTO_ENTROPY = True
DETERMINISTIC = False
hidden_dim = 512
model_path = './sac_model/sac_v2_multiprocess_multi'
sac_trainer = SAC_Trainer(replay_buffer, hidden_dim=hidden_dim, action_range=action_range)
if args.train:
# share the global parameters in multiprocessing
sac_trainer.soft_q_net1.share_memory()
sac_trainer.soft_q_net2.share_memory()
sac_trainer.target_soft_q_net1.share_memory()
sac_trainer.target_soft_q_net2.share_memory()
sac_trainer.policy_net.share_memory()
ShareParameters(sac_trainer.soft_q_optimizer1)
ShareParameters(sac_trainer.soft_q_optimizer2)
ShareParameters(sac_trainer.policy_optimizer)
ShareParameters(sac_trainer.alpha_optimizer)
rewards_queue = mp.Queue() # used for get rewards from all processes and plot the curve
num_workers = 2 # or: mp.cpu_count()
processes = []
rewards = [0]
for i in range(num_workers):
process = Process(target=worker, args=(
i, sac_trainer, ENV, rewards_queue, replay_buffer, max_episodes, max_steps, \
batch_size, explore_steps, update_itr, action_itr, AUTO_ENTROPY, DETERMINISTIC,
hidden_dim, model_path)) # the args contain shared and not shared
process.daemon = True # all processes closed when the main stops
processes.append(process)
[p.start() for p in processes]
while True: # keep geting the episode reward from the queue
r = rewards_queue.get()
if r is not None:
rewards.append(0.9 * rewards[-1] + 0.1 * r) # moving average of episode rewards
else:
break
if len(rewards) % 20 == 0 and len(rewards) > 0:
plot(rewards)
[p.join() for p in processes] # finished at the same time
sac_trainer.save_model(model_path)
if args.test:
# single process for testing
env = L2RunEnv(visualize=True) # L2M2019Env
sac_trainer.load_model(model_path)
sac_trainer.to_cuda() # from cpu to cuda
for eps in range(10):
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
elif ENV == 'Pendulum':
state = env.reset()
episode_reward = 0
for step in range(max_steps):
action = sac_trainer.policy_net.get_action(state, deterministic = DETERMINISTIC)
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
elif ENV == 'Pendulum':
next_state, reward, done, _ = env.step(action)
env.render()
print('Episode: ', eps, '| Episode Reward: ', episode_reward)