-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy pathqt_opt_v3.py
329 lines (256 loc) · 12.1 KB
/
qt_opt_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
'''
QT-Opt: Q-value assisted CEM policy learning,
for reinforcement learning on robotics.
QT-Opt: https://arxiv.org/pdf/1806.10293.pdf
CEM: https://www.youtube.com/watch?v=tNAIHEse7Ms
Pytorch implementation
CEM for fitting the action directly, action is not directly dependent on state.
Actually CEM could used be fitting any part (the variable x or the variable y that parameterizes the variable x):
Q(s,a), a=w*s+b, CEM could fit 'Q' or 'a' or 'w', all possible and theoretically feasible.
'''
import math
import random
import argparse
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from torch.distributions import Categorical
from collections import namedtuple
from IPython.display import clear_output
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import display
from reacher import Reacher
# use_cuda = torch.cuda.is_available()
# device = torch.device("cuda" if use_cuda else "cpu")
# print(device)
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=True)
args = parser.parse_args()
GPU = True
device_idx = 0
if GPU:
device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print(device)
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = int((self.position + 1) % self.capacity) # as a ring buffer
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch)) # stack for each element
'''
the * serves as unpack: sum(a,b) <=> batch=(a,b), sum(*batch) ;
zip: a=[1,2], b=[2,3], zip(a,b) => [(1, 2), (2, 3)] ;
the map serves as mapping the function on each list element: map(square, [2,3]) => [4,9] ;
np.stack((1,2)) => array([1, 2])
'''
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class ContinuousActionLinearPolicy(object):
def __init__(self, theta, state_dim, action_dim):
assert len(theta) == (state_dim + 1) * action_dim
self.W = theta[0 : state_dim * action_dim].reshape(state_dim, action_dim)
self.b = theta[state_dim * action_dim : None].reshape(1, action_dim)
def act(self, state):
# a = state.dot(self.W) + self.b
a = np.dot(state, self.W) + self.b
return a
def update(self, theta):
self.W = theta[0 : state_dim * action_dim].reshape(state_dim, action_dim)
self.b = theta[state_dim * action_dim : None].reshape(1, action_dim)
class CEM():
'''
cross-entropy method, as optimization of the action policy
'''
def __init__(self, theta_dim, ini_mean_scale=0.0, ini_std_scale=1.0):
self.theta_dim = theta_dim
self.initialize(ini_mean_scale=ini_mean_scale, ini_std_scale=ini_std_scale)
def initialize(self, ini_mean_scale=0.0, ini_std_scale=1.0):
self.mean = ini_mean_scale*np.ones(self.theta_dim)
self.std = ini_std_scale*np.ones(self.theta_dim)
def sample(self):
# theta = self.mean + np.random.randn(self.theta_dim) * self.std
theta = self.mean + np.random.normal(size=self.theta_dim) * self.std
return theta
def sample_multi(self, n):
theta_list=[]
for i in range(n):
theta_list.append(self.sample())
return np.array(theta_list)
def update(self, selected_samples):
self.mean = np.mean(selected_samples, axis = 0)
# print('mean: ', self.mean)
self.std = np.std(selected_samples, axis = 0) # plus the entropy offset, or else easily get 0 std
# print('std: ', self.std)
return self.mean, self.std
class QNetwork(nn.Module):
def __init__(self, input_dim, hidden_dim, init_w=3e-3):
super(QNetwork, self).__init__()
self.linear1 = nn.Linear(input_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat([state, action], 1) # the dim 0 is number of samples
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class QT_Opt():
def __init__(self, replay_buffer, hidden_dim, q_lr=3e-4, cem_update_itr=2, select_num=6, num_samples=64):
self.num_samples = num_samples
self.select_num = select_num
self.cem_update_itr = cem_update_itr
self.replay_buffer = replay_buffer
self.qnet = QNetwork(state_dim+action_dim, hidden_dim).to(device) # gpu
self.target_qnet1 = QNetwork(state_dim+action_dim, hidden_dim).to(device)
self.target_qnet2 = QNetwork(state_dim+action_dim, hidden_dim).to(device)
self.cem = CEM(theta_dim = action_dim) # cross-entropy method for updating
self.q_optimizer = optim.Adam(self.qnet.parameters(), lr=q_lr)
self.step_cnt = 0
def update(self, batch_size, gamma=0.9, soft_tau=1e-2, update_delay=100):
state, action, reward, next_state, done = self.replay_buffer.sample(batch_size)
self.step_cnt+=1
state_ = torch.FloatTensor(state).to(device)
next_state_ = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device) # reward is single value, unsqueeze() to add one dim to be [reward] at the sample dim;
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
predict_q = self.qnet(state_, action) # predicted Q(s,a) value
# get argmax_a' from the CEM for the target Q(s', a')
new_next_action = []
for i in range(batch_size): # batch of states, use them one by one, to prevent the lack of memory
new_next_action.append(self.cem_optimal_action(next_state[i]))
new_next_action=torch.FloatTensor(new_next_action).to(device)
target_q_min = torch.min(self.target_qnet1(next_state_, new_next_action), self.target_qnet2(next_state_, new_next_action))
target_q = reward + (1-done)*gamma*target_q_min
q_loss = ((predict_q - target_q.detach())**2).mean() # MSE loss, note that original paper uses cross-entropy loss
print(q_loss)
self.q_optimizer.zero_grad()
q_loss.backward()
self.q_optimizer.step()
# update the target nets, according to original paper:
# one with Polyak averaging, another with lagged/delayed update
self.target_qnet1=self.target_soft_update(self.qnet, self.target_qnet1, soft_tau)
self.target_qnet2=self.target_delayed_update(self.qnet, self.target_qnet2, update_delay)
def cem_optimal_action(self, state):
''' evaluate action wrt Q(s,a) to select the optimal using CEM '''
cuda_states = torch.FloatTensor(np.vstack([state]*self.num_samples)).to(device)
self.cem.initialize() # every time use a new cem, cem is only for deriving the argmax_a'
for itr in range(self.cem_update_itr):
actions = self.cem.sample_multi(self.num_samples)
q_values = self.target_qnet1(cuda_states, torch.FloatTensor(actions).to(device)).detach().cpu().numpy().reshape(-1) # 2 dim to 1 dim
max_idx=q_values.argsort()[-1] # select one maximal q
idx = q_values.argsort()[-int(self.select_num):] # select top maximum q
selected_actions = actions[idx]
_,_=self.cem.update(selected_actions)
optimal_action = actions[max_idx]
return optimal_action
def target_soft_update(self, net, target_net, soft_tau):
''' Soft update the target net '''
for target_param, param in zip(target_net.parameters(), net.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return target_net
def target_delayed_update(self, net, target_net, update_delay):
''' delayed update the target net '''
if self.step_cnt%update_delay == 0:
for target_param, param in zip(target_net.parameters(), net.parameters()):
target_param.data.copy_( # copy data value into target parameters
param.data
)
return target_net
def save_model(self, path):
torch.save(self.qnet.state_dict(), path)
torch.save(self.target_qnet1.state_dict(), path)
torch.save(self.target_qnet2.state_dict(), path)
def load_model(self, path):
self.qnet.load_state_dict(torch.load(path))
self.target_qnet1.load_state_dict(torch.load(path))
self.target_qnet2.load_state_dict(torch.load(path))
self.qnet.eval()
self.target_qnet1.eval()
self.target_qnet2.eval()
def plot(rewards):
clear_output(True)
plt.figure(figsize=(20,5))
# plt.subplot(131)
plt.plot(rewards)
plt.savefig('qt_opt_v3.png')
# plt.show()
if __name__ == '__main__':
NUM_JOINTS=2
LINK_LENGTH=[200, 140]
INI_JOING_ANGLES=[0.1, 0.1]
SCREEN_SIZE=1000
SPARSE_REWARD=False
SCREEN_SHOT=False
env=Reacher(screen_size=SCREEN_SIZE, num_joints=NUM_JOINTS, link_lengths = LINK_LENGTH, \
ini_joint_angles=INI_JOING_ANGLES, target_pos = [669,430], render=True)
action_dim = env.num_actions # 2
state_dim = env.num_observations # 8
hidden_dim = 512
batch_size=100
model_path = './qt_opt_model/model'
replay_buffer_size = 5e5
replay_buffer = ReplayBuffer(replay_buffer_size)
qt_opt = QT_Opt(replay_buffer, hidden_dim)
if args.train:
# hyper-parameters
max_episodes = 400
max_steps = 100
frame_idx = 0
episode_rewards = []
for i_episode in range (max_episodes):
state = env.reset(SCREEN_SHOT)
episode_reward = 0
for step in range(max_steps):
# action = qt_opt.policy.act(state)
action = qt_opt.cem_optimal_action(state)
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
episode_reward += reward
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
if len(replay_buffer) > batch_size:
qt_opt.update(batch_size)
qt_opt.save_model(model_path)
episode_rewards.append(episode_reward)
if i_episode% 10==0:
plot(episode_rewards)
print('Episode: {} | Reward: {}'.format(i_episode, episode_reward))
if args.test:
qt_opt.load_model(model_path)
# hyper-parameters
max_episodes = 10
max_steps = 100
frame_idx = 0
episode_rewards = []
for i_episode in range (max_episodes):
state = env.reset(SCREEN_SHOT)
episode_reward = 0
for step in range(max_steps):
# action = qt_opt.policy.act(state)
action = qt_opt.cem_optimal_action(state)
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
episode_reward += reward
state = next_state
episode_rewards.append(episode_reward)
# plot(episode_rewards)
print('Episode: {} | Reward: {}'.format(i_episode, episode_reward))