-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy pathppo_continuous3.py
240 lines (191 loc) · 8.34 KB
/
ppo_continuous3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
Proximal Policy Optimization (PPO) version 3
----------------------------
1 actor and 1 critic
This one is basically the same as PPO_continuous_v2 with slightly different coding style.
* It uses batch of samples for update (which can be more than an episode).
* It merge the losses of critic and actor into one update manner, using a single optimizer
instead of one for actor and one for critic.
* It uses the min of clipping value loss and non-clipping value loss.
* It additionally has a policy entropy bonus in loss (line 146).
* It uses MultivariateNormal for policy distribution instead of Normal.
To run
------
python ***.py
"""
import torch
import torch.nn as nn
from torch.distributions import MultivariateNormal
import gym
import numpy as np
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Memory:
def __init__(self):
self.actions = []
self.states = []
self.logprobs = []
self.rewards = []
self.is_terminals = []
def clear_memory(self):
del self.actions[:]
del self.states[:]
del self.logprobs[:]
del self.rewards[:]
del self.is_terminals[:]
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, action_std):
super(ActorCritic, self).__init__()
# action mean range -1 to 1
self.actor = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 32),
nn.Tanh(),
nn.Linear(32, action_dim),
nn.Tanh()
)
# critic
self.critic = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 32),
nn.Tanh(),
nn.Linear(32, 1)
)
self.action_var = torch.full((action_dim,), action_std*action_std).to(device)
def forward(self):
raise NotImplementedError
def act(self, state, memory):
action_mean = self.actor(state)
cov_mat = torch.diag(self.action_var).to(device)
dist = MultivariateNormal(action_mean, cov_mat)
action = dist.sample()
action_logprob = dist.log_prob(action)
memory.states.append(state)
memory.actions.append(action)
memory.logprobs.append(action_logprob)
return action.detach()
def evaluate(self, state, action):
action_mean = torch.squeeze(self.actor(state))
action_var = self.action_var.expand_as(action_mean)
cov_mat = torch.diag_embed(action_var).to(device)
dist = MultivariateNormal(action_mean, cov_mat)
action_logprobs = dist.log_prob(torch.squeeze(action))
dist_entropy = dist.entropy()
state_value = self.critic(state)
return action_logprobs, torch.squeeze(state_value), dist_entropy
class PPO:
def __init__(self, state_dim, action_dim, action_std, lr, betas, gamma, K_epochs, eps_clip):
self.lr = lr
self.betas = betas
self.gamma = gamma
self.eps_clip = eps_clip
self.K_epochs = K_epochs
self.policy = ActorCritic(state_dim, action_dim, action_std).to(device)
self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=lr, betas=betas)
self.policy_old = ActorCritic(state_dim, action_dim, action_std).to(device)
self.policy_old.load_state_dict(self.policy.state_dict())
self.MseLoss = nn.MSELoss()
def select_action(self, state, memory):
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
return self.policy_old.act(state, memory).cpu().data.numpy().flatten()
def update(self, memory):
# Monte Carlo estimate of rewards:
rewards = []
discounted_reward = 0
for reward, is_terminal in zip(reversed(memory.rewards), reversed(memory.is_terminals)):
if is_terminal:
discounted_reward = 0
discounted_reward = reward + (self.gamma * discounted_reward)
rewards.insert(0, discounted_reward)
# Normalizing the rewards:
rewards = torch.tensor(rewards).to(device)
rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-5)
# convert list to tensor
old_states = torch.squeeze(torch.stack(memory.states).to(device)).detach()
old_actions = torch.squeeze(torch.stack(memory.actions).to(device)).detach()
old_logprobs = torch.squeeze(torch.stack(memory.logprobs)).to(device).detach()
# Optimize policy for K epochs:
for _ in range(self.K_epochs):
# Evaluating old actions and values :
logprobs, state_values, dist_entropy = self.policy.evaluate(old_states, old_actions)
# Finding the ratio (pi_theta / pi_theta__old):
ratios = torch.exp(logprobs - old_logprobs.detach())
# Finding Surrogate Loss:
advantages = rewards - state_values.detach()
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1-self.eps_clip, 1+self.eps_clip) * advantages
loss = -torch.min(surr1, surr2) + 0.5*self.MseLoss(state_values, rewards) - 0.01*dist_entropy
# take gradient step
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
# Copy new weights into old policy:
self.policy_old.load_state_dict(self.policy.state_dict())
def main():
############## Hyperparameters ##############
env_name = "BipedalWalker-v2"
render = False
solved_reward = 300 # stop training if avg_reward > solved_reward
log_interval = 20 # print avg reward in the interval
max_episodes = 10000 # max training episodes
max_timesteps = 150 # max timesteps in one episode
update_timestep = 500 # update policy every n timesteps
action_std = 0.5 # constant std for action distribution (Multivariate Normal)
K_epochs = 80 # update policy for K epochs
eps_clip = 0.2 # clip parameter for PPO
gamma = 0.99 # discount factor
lr = 0.0003 # parameters for Adam optimizer
betas = (0.9, 0.999)
random_seed = None
#############################################
# creating environment
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
if random_seed:
print("Random Seed: {}".format(random_seed))
torch.manual_seed(random_seed)
env.seed(random_seed)
np.random.seed(random_seed)
memory = Memory()
ppo = PPO(state_dim, action_dim, action_std, lr, betas, gamma, K_epochs, eps_clip)
print(lr,betas)
# logging variables
running_reward = 0
avg_length = 0
time_step = 0
# training loop
for i_episode in range(1, max_episodes+1):
state = env.reset()
for t in range(max_timesteps):
time_step +=1
# Running policy_old:
action = ppo.select_action(state, memory)
state, reward, done, _ = env.step(action)
# Saving reward and is_terminals:
memory.rewards.append(reward)
memory.is_terminals.append(done)
# update if its time
if time_step % update_timestep == 0:
ppo.update(memory)
memory.clear_memory()
time_step = 0
running_reward += reward
if render:
env.render()
if done:
break
avg_length += t
# save every 500 episodes
if i_episode % 500 == 0:
torch.save(ppo.policy.state_dict(), './PPO_continuous_{}.pth'.format(env_name))
# logging
if i_episode % log_interval == 0:
avg_length = int(avg_length/log_interval)
running_reward = int((running_reward/log_interval))
print('Episode {} \t Avg length: {} \t Avg reward: {}'.format(i_episode, avg_length, running_reward))
running_reward = 0
avg_length = 0
if __name__ == '__main__':
main()