-
Notifications
You must be signed in to change notification settings - Fork 35
/
preprocess_triangle.py
1461 lines (1136 loc) · 63.4 KB
/
preprocess_triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
import onmt
import onmt.markdown
import argparse
import torch
import subprocess
import time, datetime
from onmt.data.binarizer import Binarizer
from onmt.data.binarizer import SpeechBinarizer
from onmt.data.indexed_dataset import IndexedDatasetBuilder
import numpy as np
import warnings
import os
from os.path import dirname, abspath
import gc
warnings.filterwarnings("ignore", category=UserWarning)
parser = argparse.ArgumentParser(description='preprocess.py')
onmt.markdown.add_md_help_argument(parser)
# **Preprocess Options**
parser.add_argument('-multi_dataset', action='store_true',
help="Save each dataset separately instead of one joined dataset")
parser.add_argument('-multi_mirror', action='store_true',
help="Save each dataset separately instead of one joined dataset")
parser.add_argument('-resume', action='store_true',
help="If the dataset is created, ignored and create the next one")
parser.add_argument('-config', help="Read options from this file")
parser.add_argument('-src_type', default="text",
help="Type of the source input. Options are [text|img|audio].")
parser.add_argument('-sort_type', default="ascending",
help="Type of sorting. Options are [ascending|descending].")
parser.add_argument('-src_img_dir', default=".",
help="Location of source images")
parser.add_argument('-stride', type=int, default=1,
help="Stride on input features")
parser.add_argument('-concat', type=int, default=1,
help="Concate sequential audio features to decrease sequence length")
parser.add_argument('-previous_context', type=int, default=0,
help="Number of previous sentence for context")
parser.add_argument('-input_type', default="word",
help="Input type: word/char")
parser.add_argument('-data_type', default="int64",
help="Input type for storing text (int64|int32|int|int16) to reduce memory load")
parser.add_argument('-format', default="raw",
help="Save data format: binary or raw. Binary should be used to load faster")
parser.add_argument('-external_tokenizer', default="",
help="External tokenizer from Huggingface. Currently supports barts.")
parser.add_argument('-train_src', required=True,
help="Path to the training source data")
parser.add_argument('-past_train_src', default="",
help="Path to the training source data")
parser.add_argument('-future_train_src', default="",
help="Path to the training source data")
parser.add_argument('-train_tgt', required=True,
help="Path to the training target data")
parser.add_argument('-aux_train_tgt', default="",
help="Path to the training source data")
parser.add_argument('-valid_src', required=True,
help="Path to the validation source data")
parser.add_argument('-past_valid_src', default="",
help="Path to the validation source data")
parser.add_argument('-future_valid_src', default="",
help="Path to the validation source data")
parser.add_argument('-valid_tgt', required=True,
help="Path to the validation target data")
parser.add_argument('-aux_valid_tgt', default="",
help="Path to the training source data")
parser.add_argument('-train_src_lang', default="src",
help="Language(s) of the source sequences.")
parser.add_argument('-train_src_atbs', default="",
help="Attributes(s) of the source sequences.")
parser.add_argument('-train_tgt_lang', default="tgt",
help="Language(s) of the target sequences.")
parser.add_argument('-train_tgt_atbs', default="",
help="Attributes(s) of the source sequences.")
parser.add_argument('-valid_src_lang', default="src",
help="Language(s) of the source sequences.")
parser.add_argument('-valid_src_atbs', default="",
help="Attributes(s) of the source sequences.")
parser.add_argument('-valid_tgt_lang', default="tgt",
help="Language(s) of the target sequences.")
parser.add_argument('-valid_tgt_atbs', default="",
help="Attributes(s) of the source sequences.")
parser.add_argument('-save_data', required=True,
help="Output file for the prepared data")
parser.add_argument('-src_vocab_size', type=int, default=9999999,
help="Size of the source vocabulary")
parser.add_argument('-tgt_vocab_size', type=int, default=9999999,
help="Size of the target vocabulary")
parser.add_argument('-src_vocab',
help="Path to an existing source vocabulary")
parser.add_argument('-tgt_vocab',
help="Path to an existing target vocabulary")
parser.add_argument('-load_dict',
help="Path to an existing target vocabulary")
parser.add_argument('-src_seq_length', type=int, default=10000,
help="Maximum source sequence length")
parser.add_argument('-src_seq_length_trunc', type=int, default=0,
help="Truncate source sequence length.")
parser.add_argument('-tgt_seq_length', type=int, default=10000,
help="Maximum target sequence length to keep.")
parser.add_argument('-tgt_seq_length_trunc', type=int, default=0,
help="Truncate target sequence length.")
# tokens
parser.add_argument('-src_bos_token', type=str, default="<s>",
help='SRC BOS Token Default is <s>.')
parser.add_argument('-src_eos_token', type=str, default="</s>",
help='SRC BOS Token. Default is </s>.')
parser.add_argument('-src_unk_token', type=str, default="<unk>",
help='SRC Unk Token. Default is <unk>.')
parser.add_argument('-src_pad_token', type=str, default="<blank>",
help='SRC PAD Token. Default is <blank>.')
parser.add_argument('-tgt_bos_token', type=str, default="<s>",
help='TGT BOS Token Default is <s>.')
parser.add_argument('-tgt_eos_token', type=str, default="</s>",
help='TGT BOS Token. Default is </s>.')
parser.add_argument('-tgt_unk_token', type=str, default="<unk>",
help='TGT Unk Token. Default is <unk>.')
parser.add_argument('-tgt_pad_token', type=str, default="<blank>",
help='TGT PAD Token. Default is <blank>.')
parser.add_argument('-shuffle', type=int, default=1,
help="Shuffle data")
parser.add_argument('-asr', action='store_true',
help="prepare data for asr task")
parser.add_argument('-asr_format', default="h5",
help="Format of asr data h5 or scp")
parser.add_argument('-lm', action='store_true',
help="prepare data for LM task")
parser.add_argument('-fp16', action='store_true',
help="store ASR data in fp16")
parser.add_argument('-seed', type=int, default=3435,
help="Random seed")
parser.add_argument('-lower', action='store_true', help='lowercase data')
parser.add_argument('-load_bpe_voc', action='store_true', help='lowercase data')
parser.add_argument('-no_bos', action='store_true', help='not adding bos word (this is done manually in the data)')
parser.add_argument('-sort_by_target', action='store_true', help='lowercase data')
parser.add_argument('-join_vocab', action='store_true', help='Using one dictionary for both source and target')
parser.add_argument('-report_every', type=int, default=100000,
help="Report status every this many sentences")
parser.add_argument('-reshape_speech', type=int, default=1,
help="Reshaping the speech segments here. Mostly for compatibility..")
parser.add_argument('-num_threads', type=int, default=1,
help="Number of threads for multiprocessing")
parser.add_argument('-verbose', action='store_true',
help="Print out information during preprocessing")
opt = parser.parse_args()
torch.manual_seed(opt.seed)
def make_vocab(name, filenames, size, tokenizer, num_workers=1):
if name == "source":
vocab = onmt.Dict([opt.src_pad_token, opt.src_unk_token,
opt.src_bos_token, opt.src_eos_token],
lower=opt.lower)
elif name == "target":
vocab = onmt.Dict([opt.tgt_pad_token, opt.tgt_unk_token,
opt.tgt_bos_token, opt.tgt_eos_token],
lower=opt.lower)
else:
print("Warning: check the name")
exit(-1)
for filename in filenames:
print("Generating vocabulary from file %s ... " % filename)
onmt.Dict.gen_dict_from_file(filename, vocab, tokenizer, num_workers=num_workers)
original_size = vocab.size()
vocab = vocab.prune(size)
print('Created dictionary of size %d (pruned from %d)' %
(vocab.size(), original_size))
return vocab
def init_vocab(name, data_files, vocab_file, vocab_size, tokenizer, num_workers=1):
vocab = None
if vocab_file is not None:
# If given, load existing word dictionary.
print('Reading ' + name + ' vocabulary from \'' + vocab_file + '\'...')
if not opt.load_bpe_voc:
vocab = onmt.Dict()
else:
if name == "target":
vocab = onmt.Dict([opt.tgt_pad_token, opt.tgt_unk_token,
opt.tgt_bos_token, opt.tgt_eos_token],
lower=opt.lower)
elif name == "source":
vocab = onmt.Dict([opt.src_pad_token, opt.src_unk_token,
opt.src_bos_token, opt.src_eos_token],
lower=opt.lower)
else:
print("Warning: name should be source or target")
exit(-1)
vocab.loadFile(vocab_file)
print('Loaded ' + str(vocab.size()) + ' ' + name + ' words')
if vocab is None:
print('Building ' + name + ' vocabulary...')
gen_word_vocab = make_vocab(name, data_files, vocab_size, tokenizer, num_workers=num_workers, )
vocab = gen_word_vocab
print()
return vocab
def save_vocabulary(name, vocab, file):
print('Saving ' + name + ' vocabulary to \'' + file + '\'...')
vocab.writeFile(file)
def save_dataset(path, data, format, dicts, src_type):
# Each dataset is comprised of the following components:
# src: tensors for the source vectors, or the scp_path (in ASR case)
# tgt: tensors for the target vectors
# src_lang: tensors for the source language ids (simplified)
# tgt_lang: tensors for the target language ids (simplified)
# convert all datasets to pytorch tensors and save to .pt
if format in ['raw', 'bin']:
print('Saving data to ' + os.path.join(path, 'data.pt') + '...')
save_data = {'type': opt.src_type ,
'data': data}
torch.save(save_data, os.path.join(path, 'data.pt'))
print("Done")
# for ASR only
elif format in ['scp', 'scpmem', 'wav']:
print('Saving target data to memory indexed data files. Source data is stored only as scp path.')
from onmt.data.mmap_indexed_dataset import MMapIndexedDatasetBuilder
assert opt.asr, "ASR data format is required for this memory indexed format"
# TODO: changing this to before saving everything
# torch.save(dicts, opt.save_data + '.dict.pt')
# binarize the training set first
for set_ in ['tgt', 'aux_tgt', 'src_lang', 'tgt_lang', 'src_atb', 'tgt_atb']:
if set_ not in data or data[set_] is None:
continue
if opt.data_type == 'int64':
dtype = np.int64
else:
dtype = np.int32
indexed_data = MMapIndexedDatasetBuilder(os.path.join(path, "data.%s.bin" % set_), dtype=dtype)
# add item from training data to the indexed data
for tensor in data[set_]:
indexed_data.add_item(tensor)
indexed_data.finalize(os.path.join(path, "data.%s.idx" % set_))
del indexed_data
for set_ in ['src_sizes', 'tgt_sizes']:
if data[set_] is not None:
np_array = np.asarray(data[set_])
np.save(os.path.join(path, "data.%s.npy") % set_, np_array)
else:
print("Training %s not found " % set_)
# Finally save the audio path
torch.save(data['src'], os.path.join(path, 'data.scp_path.pt'))
if 'prev_src' in data and data['prev_src'] is not None:
torch.save(data['prev_src'], os.path.join(path, 'data.prev_scp_path.pt'))
print("Done")
elif opt.format in ['mmap', 'mmem']:
print('Saving data to memory indexed data files')
from onmt.data.mmap_indexed_dataset import MMapIndexedDatasetBuilder
if opt.asr:
print("ASR data format isn't compatible with memory indexed format")
raise AssertionError
# save dicts in this format
# torch.save(dicts, opt.save_data + '.dict.pt')
# binarize the training set first
for set_ in ['src', 'tgt', 'src_lang', 'tgt_lang', 'src_atb', 'tgt_atb']:
if set_ not in data or data[set_] is None:
continue
if opt.data_type == 'int64':
dtype = np.int64
else:
dtype = np.int32
indexed_data = MMapIndexedDatasetBuilder(os.path.join(path, "data.%s.bin" % set_), dtype=dtype)
# add item from training data to the indexed data
for tensor in data[set_]:
indexed_data.add_item(tensor)
indexed_data.finalize(os.path.join(path, "data.%s.idx" % set_))
del indexed_data
for set_ in ['src_sizes', 'tgt_sizes']:
if data[set_] is not None:
np_array = np.asarray(data[set_])
np.save(os.path.join(path, "data.%s.npy" % set_), np_array)
else:
print("Set %s not found " % set_)
def make_lm_data(tgt_file, tgt_dicts, max_tgt_length=1000, input_type='word', data_type='int32'):
tgt = []
sizes = []
count, ignored = 0, 0
print('Processing %s ...' % (tgt_file))
tgtf = open(tgt_file)
eos = torch.LongTensor(1).fill_(opt.tgt_eos_token)
# print(eos.size())
tensors = [eos]
# find the number of words in the sentence
while True:
tline = tgtf.readline()
# normal end of file
if tline == "":
break
tline = tline.strip()
# source and/or target are empty
if tline == "":
print('WARNING: ignoring an empty line (' + str(count + 1) + ')')
continue
if input_type == 'word':
tgt_words = tline.split()
elif input_type == 'char':
tgt_words = split_line_by_char(tline)
tensor = tgt_dicts.convertToIdx(tgt_words,
opt.tgt_unk_token,
None,
opt.tgt_eos_token,
type=data_type)
# print(tensor.size())
tensors.append(tensor)
count = count + 1
if count % opt.report_every == 0:
print('... %d sentences prepared' % count)
tgtf.close()
# concatenate all tensors into one
tensor = torch.cat(tensors, dim=-1)
return tensor
def make_translation_data(src_file, tgt_file, src_dicts, tgt_dicts, tokenizer, max_src_length=64, max_tgt_length=64,
add_bos=True, data_type='int64', num_workers=1, verbose=False,
external_tokenizer=None, src_lang=None, tgt_lang=None, lang_list=[],
early_save=False, savedir="", mirror=False, mirror_savedir=""):
src, tgt = [], []
src_sizes = []
tgt_sizes = []
if type(lang_list) is dict:
lang_list = sorted(list(lang_list.keys()))
print("[INFO] Binarizing file %s ..." % src_file)
binarized_src = Binarizer.binarize_file(src_file, src_dicts, tokenizer,
bos_word=None, eos_word=None,
data_type=data_type,
num_workers=num_workers, verbose=verbose,
external_tokenizer=external_tokenizer,
lang=src_lang, lang_list=lang_list, target=False
)
if early_save:
os.makedirs(savedir, exist_ok=True)
if mirror:
os.makedirs(mirror_savedir, exist_ok=True)
src_len = len(binarized_src['data'])
print("Saving source data to %s .... with %d entries" % (savedir, src_len))
if data_type == 'int64':
dtype = np.int64
else:
dtype = np.int32
from onmt.data.mmap_indexed_dataset import MMapIndexedDatasetBuilder
indexed_data = MMapIndexedDatasetBuilder(os.path.join(savedir, "data.%s.bin" % "src"), dtype=dtype)
# add item from training data to the indexed data
for tensor in binarized_src['data']:
indexed_data.add_item(tensor)
indexed_data.finalize(os.path.join(savedir, "data.%s.idx" % "src"))
del binarized_src['data']
gc.collect()
np_array = np.asarray(binarized_src['sizes'])
np.save(os.path.join(savedir, "data.%s.npy" % "src_sizes"), np_array)
del binarized_src
del indexed_data
del np_array
gc.collect()
if mirror:
print("Saving mirrrored target data to %s .... with %d entries" % (mirror_savedir, src_len))
source = os.path.join(savedir, "data.%s.bin" % "src")
target = os.path.join(mirror_savedir, "data.%s.bin" % "tgt")
os.symlink(os.path.abspath(source), target)
source = os.path.join(savedir, "data.%s.idx" % "src")
target = os.path.join(mirror_savedir, "data.%s.idx" % "tgt")
os.symlink(os.path.abspath(source), target)
source = os.path.join(savedir, "data.%s.npy" % "src_sizes")
target = os.path.join(mirror_savedir, "data.%s.npy" % "tgt_sizes")
os.symlink(os.path.abspath(source), target)
if add_bos:
tgt_bos_word = opt.tgt_bos_token
else:
tgt_bos_word = None
print("[INFO] Binarizing file %s ..." % tgt_file)
binarized_tgt = Binarizer.binarize_file(tgt_file, tgt_dicts, tokenizer,
bos_word=tgt_bos_word, eos_word=opt.tgt_eos_token,
data_type=data_type,
num_workers=num_workers, verbose=verbose,
external_tokenizer=external_tokenizer,
lang=tgt_lang, lang_list=lang_list, target=True
)
if early_save:
tgt_len = len(binarized_tgt['data'])
assert tgt_len == src_len, "Number of samples doesn't match between source and target!!!"
print("Saving target data to %s .... with %d samples" % (savedir, tgt_len))
if data_type == 'int64':
dtype = np.int64
else:
dtype = np.int32
from onmt.data.mmap_indexed_dataset import MMapIndexedDatasetBuilder
indexed_data = MMapIndexedDatasetBuilder(os.path.join(savedir, "data.%s.bin" % "tgt"), dtype=dtype)
# add item from training data to the indexed data
for tensor in binarized_tgt['data']:
indexed_data.add_item(tensor)
indexed_data.finalize(os.path.join(savedir, "data.%s.idx" % "tgt"))
del binarized_tgt['data']
del indexed_data
gc.collect()
np_array = np.asarray(binarized_tgt['sizes'])
np.save(os.path.join(savedir, "data.%s.npy" % "tgt_sizes"), np_array)
del binarized_tgt
del np_array
gc.collect()
if mirror:
print("Saving mirrrored source data to %s .... with %d entries" % (mirror_savedir, src_len))
source = os.path.join(savedir, "data.%s.bin" % "tgt")
target = os.path.join(mirror_savedir, "data.%s.bin" % "src")
os.symlink(os.path.abspath(source), target)
source = os.path.join(savedir, "data.%s.idx" % "tgt")
target = os.path.join(mirror_savedir, "data.%s.idx" % "src")
os.symlink(os.path.abspath(source), target)
source = os.path.join(savedir, "data.%s.npy" % "tgt_sizes")
target = os.path.join(mirror_savedir, "data.%s.npy" % "src_sizes")
os.symlink(os.path.abspath(source), target)
src, tgt, src_sizes, tgt_sizes = None, None, None, None
else:
src = binarized_src['data']
src_sizes = binarized_src['sizes']
tgt = binarized_tgt['data']
tgt_sizes = binarized_tgt['sizes']
# currently we don't ignore anything :D
ignored = 0
print(('Prepared %d sentences ' +
'(%d ignored due to length == 0 or src len > %d or tgt len > %d)') %
(len(src), ignored, max_src_length, max_tgt_length))
return src, tgt, src_sizes, tgt_sizes
def make_asr_data(src_file, tgt_file, tgt_dicts, tokenizer,
max_src_length=64, max_tgt_length=64, add_bos=True, data_type='int64', num_workers=1, verbose=False,
input_type='word', stride=1, concat=4, prev_context=0, fp16=False, reshape=True,
asr_format="scp", output_format="raw",
external_tokenizer=None, src_lang=None, tgt_lang=None,aux_tgt_file=None, lang_list=[]):
src, tgt = [], []
src_sizes = []
tgt_sizes = []
count, ignored = 0, 0
n_unk_words = 0
if add_bos:
tgt_bos_word = opt.tgt_bos_token
else:
tgt_bos_word = None
if tgt_file is not None:
print("[INFO] Binarizing file %s ..." % tgt_file)
binarized_tgt = Binarizer.binarize_file(tgt_file, tgt_dicts, tokenizer,
bos_word=tgt_bos_word, eos_word=opt.tgt_eos_token,
data_type=data_type,
num_workers=num_workers, verbose=verbose,
external_tokenizer=external_tokenizer,
lang=tgt_lang, lang_list=lang_list, target=True)
tgt = binarized_tgt['data']
tgt_sizes = binarized_tgt['sizes']
ignored = 0
else:
tgt = None
tgt_sizes = None
if aux_tgt_file is not None:
aux_tgt = []
print("[INFO] Binarizing auxiliary target file %s ..." % aux_tgt_file)
aux_binarized_tgt = Binarizer.binarize_file(aux_tgt_file, tgt_dicts, tokenizer,
bos_word=tgt_bos_word, eos_word=opt.tgt_eos_token,
data_type=data_type,
num_workers=num_workers, verbose=verbose,
external_tokenizer=external_tokenizer,
lang=tgt_lang, lang_list=lang_list)
aux_tgt = aux_binarized_tgt['data']
aux_tgt_sizes = aux_binarized_tgt['sizes']
ignored = 0
else:
aux_tgt = None
aux_tgt_sizes = None
print('[INFO] Processing %s ...' % src_file)
# num_workers = num_workers if asr_format in ['scp', 'kaldi'] else 1
# speech binarizer has to be 1 thread at the moment
binarized_src = SpeechBinarizer.binarize_file(src_file, input_format=asr_format,
output_format=output_format, concat=concat,
stride=stride, fp16=fp16, prev_context=prev_context,
num_workers=num_workers, verbose=verbose)
src = binarized_src['data']
src_sizes = binarized_src['sizes']
if len(src_sizes) != len(tgt_sizes) and tgt_file is not None:
print("Warning: data size mismatched. Src: %d . Tgt: %d" % len(src_sizes), len(tgt_sizes))
print(('Prepared %d sentences ' +
'(%d ignored due to length == 0 or src len > %d or tgt len > %d)') %
(len(src), ignored, max_src_length, max_tgt_length))
return src, tgt, src_sizes, tgt_sizes, aux_tgt, aux_tgt_sizes
def main():
dicts = {}
tokenizer = onmt.Tokenizer(opt.input_type, opt.lower)
# We can load the dictionary from another project to ensure consistency
if opt.load_dict is not None and len(opt.load_dict) > 0:
print("[INFO] Loading dictionary from ... %s" % opt.load_dict)
dicts = torch.load(opt.load_dict)
# construct set of languages from the training languages
src_langs = opt.train_src_lang.split("|")
tgt_langs = opt.train_tgt_lang.split("|")
langs = (src_langs + tgt_langs)
langs = sorted(list(set(langs)))
if len (opt.train_src_atbs) > 0:
src_atbs = opt.train_src_atbs.split("|")
tgt_atbs = opt.train_tgt_atbs.split("|")
atbs = (src_atbs + tgt_atbs)
atbs = sorted(list(set(atbs)))
else:
atbs = []
if not opt.load_dict:
dicts['langs'] = dict()
for lang in langs:
idx = len(dicts['langs'])
dicts['langs'][lang] = idx
dicts['atbs'] = dict()
for atb in atbs:
idx = len(dicts['atbs'])
dicts['atbs'][atb] = idx
else:
if 'langs' not in dicts:
dicts['langs'] = dict()
else:
print(dicts['langs'])
print("Adding languages to existing dictionary ...")
for lang in langs:
idx = len(dicts['langs'])
if lang not in dicts['langs']:
dicts['langs'][lang] = idx
if 'atbs' not in dicts:
dicts['atbs'] = dict()
else:
print("Adding attributes to existing dictionary ...")
for atb in atbs:
idx = len(dicts['atbs'])
if atb not in dicts['atbs']:
dicts['atbs'][atb] = idx
print("Languages: ", dicts['langs'])
print("Attributes: ", dicts['atbs'])
start = time.time()
src_train_files = opt.train_src.split("|")
tgt_train_files = opt.train_tgt.split("|")
# for ASR and LM we only need to build vocab for the 'target' language
if opt.asr or opt.lm:
dicts['tgt'] = init_vocab('target', tgt_train_files, opt.tgt_vocab,
opt.tgt_vocab_size, tokenizer, num_workers=opt.num_threads)
elif opt.join_vocab:
dicts['src'] = init_vocab('source', set(src_train_files + tgt_train_files), opt.src_vocab,
opt.tgt_vocab_size, tokenizer, num_workers=opt.num_threads)
dicts['tgt'] = dicts['src']
else:
dicts['src'] = init_vocab('source', src_train_files, opt.src_vocab,
opt.src_vocab_size, tokenizer, num_workers=opt.num_threads)
dicts['tgt'] = init_vocab('target', tgt_train_files, opt.tgt_vocab,
opt.tgt_vocab_size, tokenizer, num_workers=opt.num_threads)
elapse = str(datetime.timedelta(seconds=int(time.time() - start)))
print("Vocabulary generated after %s" % elapse)
if opt.lm:
print('Preparing training language model ...')
train = dict()
train['tgt'] = make_lm_data(opt.train_tgt,
dicts['tgt'])
train['src'] = None
valid = dict()
valid['tgt'] = make_lm_data(opt.valid_tgt,
dicts['tgt'])
valid['src'] = None
train['src_sizes'] = None
train['tgt_sizes'] = None
valid['src_sizes'] = None
valid['tgt_sizes'] = None
elif opt.asr:
print('Preparing training acoustic model ...')
src_input_files = opt.train_src.split("|")
tgt_input_files = opt.train_tgt.split("|")
src_langs = opt.train_src_lang.split("|")
tgt_langs = opt.train_tgt_lang.split("|")
src_atbs = opt.train_src_atbs.split("|") if len(atbs) > 0 else [None] * len(src_input_files)
tgt_atbs = opt.train_tgt_atbs.split("|") if len(atbs) > 0 else [None] * len(tgt_input_files)
assert len(src_input_files) == len(src_langs)
assert len(src_input_files) == len(src_atbs)
assert len(src_input_files) == len(tgt_input_files)
assert len(tgt_input_files) == len(tgt_langs)
assert len(tgt_input_files) == len(tgt_atbs)
past_src_files = opt.past_train_src.split("|")
idx = 0
n_input_files = len(src_input_files)
# Training data ###################################################################
train = dict()
train['src'], train['tgt'] = list(), list()
train['src_sizes'], train['tgt_sizes'] = list(), list()
train['src_atb'], train['tgt_atb'] = list(), list()
train['src_lang'], train['tgt_lang'] = list(), list()
data = dict()
if opt.past_train_src and len(past_src_files) == len(src_input_files):
train['past_src'] = list()
train['past_src_sizes'] = list()
for i, (src_file, tgt_file, src_lang, tgt_lang, src_atb, tgt_atb) in \
enumerate(zip(src_input_files, tgt_input_files, src_langs, tgt_langs, src_atbs, tgt_atbs)):
data_name = "train.%i.%s-%s" % (idx, src_lang, tgt_lang)
dataset_path = os.path.join(dirname(opt.save_data), data_name)
if opt.multi_dataset and opt.resume:
if os.path.exists(dataset_path):
print("[INFO] Found data %s in the savedir ... Ignoring" % data_name)
idx = idx + 1
continue
src_data, tgt_data, src_sizes, tgt_sizes = make_asr_data(src_file, tgt_file,
dicts['tgt'], tokenizer,
max_src_length=opt.src_seq_length,
max_tgt_length=opt.tgt_seq_length,
input_type=opt.input_type,
stride=opt.stride, concat=opt.concat,
prev_context=opt.previous_context,
fp16=opt.fp16,
add_bos=not opt.no_bos,
asr_format=opt.asr_format,
output_format=opt.format,
num_workers=opt.num_threads,
external_tokenizer=opt.external_tokenizer,
tgt_lang=tgt_lang, verbose=opt.verbose,
lang_list=dicts['langs'])
n_samples = len(src_data)
src_atb_data, tgt_atb_data = None, None
if n_input_files == 1 or opt.multi_dataset:
# For single-file cases we only need to have 1 language per file
# which will be broadcasted
src_lang_data = [torch.Tensor([dicts['langs'][src_lang]])]
tgt_lang_data = [torch.Tensor([dicts['langs'][tgt_lang]])]
# by default its 0
if len(atbs) > 0:
src_atb_data = [torch.Tensor([dicts['atbs'][src_atb]])]
tgt_atb_data = [torch.Tensor([dicts['atbs'][tgt_atb]])]
else:
# each sample will have a different language id
src_lang_data = [torch.Tensor([dicts['langs'][src_lang]]) for _ in range(n_samples)]
tgt_lang_data = [torch.Tensor([dicts['langs'][tgt_lang]]) for _ in range(n_samples)]
if len(atbs) > 0:
src_atb_data = [torch.Tensor([dicts['atbs'][src_atb]]) for _ in range(n_samples)]
tgt_atb_data = [torch.Tensor([dicts['atbs'][tgt_atb]]) for _ in range(n_samples)]
# processing the previous segment
if opt.past_train_src and len(past_src_files) == len(src_input_files):
past_src_file = past_src_files[i]
past_src_data, _, past_src_sizes, _ = make_asr_data(past_src_file, None, None, None,
input_type=opt.input_type,
stride=opt.stride, concat=opt.concat,
prev_context=opt.previous_context,
add_bos=not opt.no_bos,
fp16=opt.fp16,
asr_format=opt.asr_format,
output_format=opt.format,
num_workers=opt.num_threads,
external_tokenizer=opt.external_tokenizer,
tgt_lang=tgt_lang, verbose=opt.verbose,
lang_list=dicts['langs'])
if opt.multi_dataset:
data['prev_src'] = prev_src_data
else:
train['past_src'] += past_src_data
train['past_src_sizes'] += past_src_sizes
# Finalizing Training data ###################################################################
if opt.multi_dataset:
data['src'] = src_data
data['tgt'] = tgt_data
data['src_sizes'] = src_sizes
data['tgt_sizes'] = tgt_sizes
data['src_lang'] = src_lang_data
data['tgt_lang'] = tgt_lang_data
if len(atbs) > 0:
data['src_atb'] = src_atb_data
data['tgt_atb'] = tgt_atb_data
print("Saving training set %i %s-%s to disk ..." % (idx, src_lang, tgt_lang))
# take basedir from opt.save_data
path = os.path.join(dirname(opt.save_data), "train.%i.%s-%s" % (idx, src_lang, tgt_lang))
os.makedirs(path, exist_ok=True)
# save data immediately
# TODO: save the prev src as well
save_dataset(path, data, opt.format, dicts, opt.src_type)
idx = idx + 1
del data
data = dict()
else:
train['src'] += src_data
train['tgt'] += tgt_data
train['src_sizes'] += src_sizes
train['tgt_sizes'] += tgt_sizes
train['src_lang'] += src_lang_data
train['tgt_lang'] += tgt_lang_data
if len(atbs) > 0:
train['src_atb'] += src_atb_data
train['tgt_atb'] += tgt_atb_data
# Validation data ###################################################################
print('Preparing validation ...')
src_input_files = opt.valid_src.split("|")
tgt_input_files = opt.valid_tgt.split("|")
past_src_files = opt.past_valid_src.split("|")
src_langs = opt.valid_src_lang.split("|")
tgt_langs = opt.valid_tgt_lang.split("|")
src_atbs = opt.valid_src_atbs.split("|") if len(atbs) > 0 else [None] * len(src_input_files)
tgt_atbs = opt.valid_tgt_atbs.split("|") if len(atbs) > 0 else [None] * len(tgt_input_files)
assert len(src_input_files) == len(src_langs)
assert len(src_input_files) == len(tgt_input_files)
assert len(tgt_input_files) == len(tgt_langs)
idx = 0
n_input_files = len(src_input_files)
data = dict()
valid = dict()
valid['src'], valid['tgt'] = list(), list()
valid['src_sizes'], valid['tgt_sizes'] = list(), list()
valid['src_lang'], valid['tgt_lang'] = list(), list()
valid['src_atb'], valid['tgt_atb'] = list(), list()
if opt.past_train_src and len(past_src_files) == len(src_input_files):
valid['past_src'] = list()
valid['past_src_sizes'] = list()
for i, (src_file, tgt_file, src_lang, tgt_lang, src_atb, tgt_atb) in \
enumerate(zip(src_input_files, tgt_input_files, src_langs, tgt_langs, src_atbs, tgt_atbs)):
data_name = "valid.%i.%s-%s" % (idx, src_lang, tgt_lang)
dataset_path = os.path.join(dirname(opt.save_data), data_name)
if opt.multi_dataset and opt.resume:
if os.path.exists(dataset_path):
print("[INFO] Found data %s in the savedir ... Ignoring" % data_name)
idx = idx + 1
continue
src_data, tgt_data, src_sizes, tgt_sizes = make_asr_data(src_file, tgt_file,
dicts['tgt'], tokenizer,
max_src_length=max(1024, opt.src_seq_length),
max_tgt_length=max(1024, opt.tgt_seq_length),
input_type=opt.input_type,
stride=opt.stride, concat=opt.concat,
prev_context=opt.previous_context,
fp16=opt.fp16,
add_bos=not opt.no_bos,
asr_format=opt.asr_format,
output_format=opt.format,
external_tokenizer=opt.external_tokenizer,
tgt_lang=tgt_lang, verbose=opt.verbose,
lang_list=dicts['langs'])
n_samples = len(src_data)
if n_input_files == 1 or opt.multi_dataset:
# For single-file cases we only need to have 1 language per file
# which will be broadcasted
src_lang_data = [torch.Tensor([dicts['langs'][src_lang]])]
tgt_lang_data = [torch.Tensor([dicts['langs'][tgt_lang]])]
# by default its 0
if len(atbs) > 0:
src_atb_data = [torch.Tensor([dicts['atbs'][src_atb]])]
tgt_atb_data = [torch.Tensor([dicts['atbs'][tgt_atb]])]
else:
# each sample will have a different language id
src_lang_data = [torch.Tensor([dicts['langs'][src_lang]]) for _ in range(n_samples)]
tgt_lang_data = [torch.Tensor([dicts['langs'][tgt_lang]]) for _ in range(n_samples)]
if len(atbs) > 0:
src_atb_data = [torch.Tensor([dicts['atbs'][src_atb]]) for _ in range(n_samples)]
tgt_atb_data = [torch.Tensor([dicts['atbs'][tgt_atb]]) for _ in range(n_samples)]
# validation past file
if opt.past_train_src and len(past_src_files) == len(src_input_files):
past_src_file = past_src_files[i]
past_src_data, _, past_src_sizes, _ = make_asr_data(past_src_file, None, None, None,
input_type=opt.input_type,
stride=opt.stride, concat=opt.concat,
prev_context=opt.previous_context,
fp16=opt.fp16,
add_bos=not opt.no_bos,
asr_format=opt.asr_format,
output_format=opt.format,
num_workers=opt.num_threads,
external_tokenizer=opt.external_tokenizer,
tgt_lang=tgt_lang, verbose=opt.verbose,
lang_list=dicts['langs'])
valid['past_src'] += past_src_data
valid['past_src_sizes'] += past_src_sizes
# Finalizing Validation data ... #########################
if opt.multi_dataset:
data['src'] = src_data
data['tgt'] = tgt_data
data['src_sizes'] = src_sizes
data['tgt_sizes'] = tgt_sizes
data['src_lang'] = src_lang_data
data['tgt_lang'] = tgt_lang_data
if len(atbs) > 0:
data['src_atb'] = src_atb_data
data['tgt_atb'] = tgt_atb_data
print("Saving validation set %i %s-%s to disk ..." % (idx, src_lang, tgt_lang))
# take basedir from opt.save_data
path = os.path.join(dirname(opt.save_data), "valid.%i.%s-%s" % (idx, src_lang, tgt_lang))
os.makedirs(path, exist_ok=True)
# save data immediately
save_dataset(path, data, opt.format, dicts, opt.src_type)
idx = idx + 1
del data
data = dict()
else:
valid['src'] += src_data
valid['tgt'] += tgt_data
valid['src_sizes'] += src_sizes
valid['tgt_sizes'] += tgt_sizes
valid['src_lang'] += src_lang_data
valid['tgt_lang'] += tgt_lang_data
if len(atbs) > 0:
valid['src_atb'] += src_atb_data
valid['tgt_atb'] += tgt_atb_data