-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathflask_online.py
215 lines (170 loc) · 6.89 KB
/
flask_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python
from onmt.online_translator import RecognizerParameter, ASROnlineTranslator
from flask import Flask, request
import torch
import numpy as np
import math
import sys
import json
import threading
import queue
import uuid
import traceback
import subprocess
host = sys.argv[1] # 192.168.0.72
port = sys.argv[2] # 5051
if len(sys.argv) <= 3:
filename = "model.conf"
else:
filename = sys.argv[3]
# what is going on here?
conf_data = open(filename,"r").read().split("\n")
model = None
for d in conf_data:
d = d.split()
if len(d)==2 and d[0]=="model":
model = d[1]
break
conf_data.append("model_ls "+str(subprocess.run(("ls -l "+model).split(), capture_output=True).stdout))
conf_data = "\n".join(conf_data)
app = Flask(__name__)
def create_unique_list(my_list):
my_list = list(set(my_list))
return my_list
def initialize_model():
model = ASROnlineTranslator(filename)
print("ASR initialized")
max_batch_size = 16
return model, max_batch_size
def use_model(reqs):
if len(reqs) == 1:
req = reqs[0]
audio_tensor, prefix, input_language, output_language, memory = req.get_data()
model.set_language(input_language, output_language)
hypo, bpe_output, scores, lang = model.translate(audio_tensor, [prefix], memory=memory)
result = {"hypo": hypo, "bpe_hypo": bpe_output, "log_probs": scores, "lid": lang}
req.publish(result)
else:
audio_tensors = list()
prefixes = list()
input_languages = list()
output_languages = list()
memories = list()
batch_runnable = False
for req in reqs:
audio_tensor, prefix, input_language, output_language, memory = req.get_data()
# TODO: set language with a language code plz
model.set_language(input_language, output_language)
audio_tensors.append(audio_tensor)
prefixes.append(prefix)
input_languages.append(input_language)
output_languages.append(output_language)
memories.append(memory)
unique_prefix_list = create_unique_list(prefixes)
unique_input_languages = create_unique_list(input_languages)
unique_output_languages = create_unique_list(output_languages)
memories = create_unique_list(memories)
if len(unique_prefix_list) == 1 and len(unique_input_languages) == 1 and len(unique_output_languages) == 1 and len(memories) == 1:
batch_runnable = True
if batch_runnable:
model.set_language(input_languages[0], output_languages[0])
hypos, bpe_outputs, all_scores, langs = model.translate_batch(audio_tensors, prefixes, memory=memories[0])
for req, hypo, bpe_output, scores, lang in zip(reqs, hypos, bpe_outputs, all_scores, langs):
result = {"hypo": hypo, "bpe_hypo": bpe_output, "log_probs": scores, "lid": lang}
req.publish(result)
else:
for req, audio_tensor, prefix, input_language, output_language, memory \
in zip(reqs, audio_tensors, prefixes, input_languages, output_languages, memories):
model.set_language(input_language, output_language)
hypo, bpe_output, scores, lang = model.translate(audio_tensor, [prefix], memory=memory)
result = {"hypo": hypo, "bpe_hypo": bpe_output, "log_probs": scores, "lid": lang}
req.publish(result)
def run_decoding():
while True:
reqs = [queue_in.get()]
while not queue_in.empty() and len(reqs) < max_batch_size:
req = queue_in.get()
reqs.append(req)
if req.priority >= 1:
break
print("Batch size:",len(reqs),"Queue size:",queue_in.qsize())
try:
use_model(reqs)
except Exception as e:
print("An error occured during model inference")
traceback.print_exc()
for req in reqs:
req.publish({"hypo":"", "status":400})
class Priority:
next_index = 0
def __init__(self, priority, id, condition, data):
self.index = Priority.next_index
Priority.next_index += 1
self.priority = priority
self.id = id
self.condition = condition
self.data = data
def __lt__(self, other):
return (-self.priority, self.index) < (-other.priority, other.index)
def get_data(self):
return self.data
def publish(self, result):
dict_out[self.id] = result
try:
with self.condition:
self.condition.notify()
except:
print("ERROR: Count not publish result")
def pcm_s16le_to_tensor(pcm_s16le):
audio_tensor = np.frombuffer(pcm_s16le, dtype=np.int16)
audio_tensor = torch.from_numpy(audio_tensor)
audio_tensor = audio_tensor.float() / math.pow(2, 15)
audio_tensor = audio_tensor.unsqueeze(1) # shape: frames x 1 (1 channel)
return audio_tensor
# corresponds to an asr_server "http://$host:$port/asr/infer/en,en" in StreamASR.py
# use None when no input- or output language should be specified
@app.route("/asr/infer/<input_language>,<output_language>", methods=["POST"])
def inference(input_language, output_language):
pcm_s16le: bytes = request.files.get("pcm_s16le").read()
prefix = request.files.get("prefix") # can be None
if prefix is not None:
prefix: str = prefix.read().decode("utf-8")
memory = request.files.get("memory") # can be None
if memory is not None:
memory: list = json.loads(memory.read())
# calculate features corresponding to a torchaudio.load(filepath) call
audio_tensor = pcm_s16le_to_tensor(pcm_s16le)
priority = request.files.get("priority") # can be None
try:
priority = int(priority.read()) # used together with priority queue
except:
priority = 0
condition = threading.Condition()
with condition:
id = str(uuid.uuid4())
data = (audio_tensor,prefix,input_language,output_language,memory)
queue_in.put(Priority(priority,id,condition,data))
condition.wait()
result = dict_out.pop(id)
status = 200
if status in result:
status = result.pop(status)
# result has to contain a key "hypo" with a string as value (other optional keys are possible)
return json.dumps(result), status
# called during automatic evaluation of the pipeline to store worker information
@app.route("/asr/version", methods=["POST"])
def version():
# return dict or string (as first argument)
return conf_data, 200
@app.route("/asr/available_languages", methods=["GET","POST"])
def languages():
langs = ['en', 'de', 'fr', 'it', 'nl', 'pt', 'zh', 'ja', 'es']
return langs
model, max_batch_size = initialize_model()
queue_in = queue.PriorityQueue()
dict_out = {}
decoding = threading.Thread(target=run_decoding)
decoding.daemon = True
decoding.start()
host = "0.0.0.0"
app.run(host=host, port=port)