This part of the appendix lists XML schemas related to the core container.
As the name implies, the util
tags deal with common, utility configuration
issues, such as configuring collections, referencing constants, and so forth.
To use the tags in the util
schema, you need to have the following preamble at the top
of your Spring XML configuration file (the text in the snippet references the
correct schema so that the tags in the util
namespace are available to you):
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="
http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/util https://www.springframework.org/schema/util/spring-util.xsd">
<!-- bean definitions here -->
</beans>
Consider the following bean definition:
<bean id="..." class="...">
<property name="isolation">
<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
</property>
</bean>
The preceding configuration uses a Spring FactoryBean
implementation (the
FieldRetrievingFactoryBean
) to set the value of the isolation
property on a bean
to the value of the java.sql.Connection.TRANSACTION_SERIALIZABLE
constant. This is
all well and good, but it is verbose and (unnecessarily) exposes Spring’s internal
plumbing to the end user.
The following XML Schema-based version is more concise, clearly expresses the developer’s intent (“inject this constant value”), and it reads better:
<bean id="..." class="...">
<property name="isolation">
<util:constant static-field="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
</property>
</bean>
FieldRetrievingFactoryBean
is a FactoryBean
that retrieves a static
or non-static field value. It is typically
used for retrieving public
static
final
constants, which may then be used to set a
property value or constructor argument for another bean.
The following example shows how a static
field is exposed, by using the
staticField
property:
<bean id="myField"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
<property name="staticField" value="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
</bean>
There is also a convenience usage form where the static
field is specified as the bean
name, as the following example shows:
<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean"/>
This does mean that there is no longer any choice in what the bean id
is (so any other
bean that refers to it also has to use this longer name), but this form is very
concise to define and very convenient to use as an inner bean since the id
does not have
to be specified for the bean reference, as the following example shows:
<bean id="..." class="...">
<property name="isolation">
<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
</property>
</bean>
You can also access a non-static (instance) field of another bean, as
described in the API documentation for the
FieldRetrievingFactoryBean
class.
Injecting enumeration values into beans as either property or constructor arguments is
easy to do in Spring. You do not actually have to do anything or know anything about
the Spring internals (or even about classes such as the FieldRetrievingFactoryBean
).
The following example enumeration shows how easy injecting an enum value is:
package javax.persistence;
public enum PersistenceContextType {
TRANSACTION,
EXTENDED
}
package javax.persistence
enum class PersistenceContextType {
TRANSACTION,
EXTENDED
}
Now consider the following setter of type PersistenceContextType
and the corresponding bean definition:
package example;
public class Client {
private PersistenceContextType persistenceContextType;
public void setPersistenceContextType(PersistenceContextType type) {
this.persistenceContextType = type;
}
}
package example
class Client {
lateinit var persistenceContextType: PersistenceContextType
}
<bean class="example.Client">
<property name="persistenceContextType" value="TRANSACTION"/>
</bean>
Consider the following example:
<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>
</bean>
</property>
</bean>
<!-- results in 10, which is the value of property 'age' of bean 'testBean' -->
<bean id="testBean.age" class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>
The preceding configuration uses a Spring FactoryBean
implementation (the
PropertyPathFactoryBean
) to create a bean (of type int
) called testBean.age
that
has a value equal to the age
property of the testBean
bean.
Now consider the following example, which adds a <util:property-path/>
element:
<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>
</bean>
</property>
</bean>
<!-- results in 10, which is the value of property 'age' of bean 'testBean' -->
<util:property-path id="name" path="testBean.age"/>
The value of the path
attribute of the <property-path/>
element follows the form of
beanName.beanProperty
. In this case, it picks up the age
property of the bean named
testBean
. The value of that age
property is 10
.
PropertyPathFactoryBean
is a FactoryBean
that evaluates a property path on a given
target object. The target object can be specified directly or by a bean name. You can then use this
value in another bean definition as a property value or constructor
argument.
The following example shows a path being used against another bean, by name:
<!-- target bean to be referenced by name -->
<bean id="person" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>
</bean>
</property>
</bean>
<!-- results in 11, which is the value of property 'spouse.age' of bean 'person' -->
<bean id="theAge"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
<property name="targetBeanName" value="person"/>
<property name="propertyPath" value="spouse.age"/>
</bean>
In the following example, a path is evaluated against an inner bean:
<!-- results in 12, which is the value of property 'age' of the inner bean -->
<bean id="theAge"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
<property name="targetObject">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="12"/>
</bean>
</property>
<property name="propertyPath" value="age"/>
</bean>
There is also a shortcut form, where the bean name is the property path. The following example shows the shortcut form:
<!-- results in 10, which is the value of property 'age' of bean 'person' -->
<bean id="person.age"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>
This form does mean that there is no choice in the name of the bean. Any reference to it
also has to use the same id
, which is the path. If used as an inner
bean, there is no need to refer to it at all, as the following example shows:
<bean id="..." class="...">
<property name="age">
<bean id="person.age"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>
</property>
</bean>
You can specifically set the result type in the actual definition. This is not necessary for most use cases, but it can sometimes be useful. See the javadoc for more info on this feature.
Consider the following example:
<!-- creates a java.util.Properties instance with values loaded from the supplied location -->
<bean id="jdbcConfiguration" class="org.springframework.beans.factory.config.PropertiesFactoryBean">
<property name="location" value="classpath:com/foo/jdbc-production.properties"/>
</bean>
The preceding configuration uses a Spring FactoryBean
implementation (the
PropertiesFactoryBean
) to instantiate a java.util.Properties
instance with values
loaded from the supplied Resource
location).
The following example uses a util:properties
element to make a more concise representation:
<!-- creates a java.util.Properties instance with values loaded from the supplied location -->
<util:properties id="jdbcConfiguration" location="classpath:com/foo/jdbc-production.properties"/>
Consider the following example:
<!-- creates a java.util.List instance with values loaded from the supplied 'sourceList' -->
<bean id="emails" class="org.springframework.beans.factory.config.ListFactoryBean">
<property name="sourceList">
<list>
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
</list>
</property>
</bean>
The preceding configuration uses a Spring FactoryBean
implementation (the
ListFactoryBean
) to create a java.util.List
instance and initialize it with values taken
from the supplied sourceList
.
The following example uses a <util:list/>
element to make a more concise representation:
<!-- creates a java.util.List instance with the supplied values -->
<util:list id="emails">
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
</util:list>
You can also explicitly control the exact type of List
that is instantiated and
populated by using the list-class
attribute on the <util:list/>
element. For
example, if we really need a java.util.LinkedList
to be instantiated, we could use the
following configuration:
<util:list id="emails" list-class="java.util.LinkedList">
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
<value>d'[email protected]</value>
</util:list>
If no list-class
attribute is supplied, the container chooses a List
implementation.
Consider the following example:
<!-- creates a java.util.Map instance with values loaded from the supplied 'sourceMap' -->
<bean id="emails" class="org.springframework.beans.factory.config.MapFactoryBean">
<property name="sourceMap">
<map>
<entry key="pechorin" value="[email protected]"/>
<entry key="raskolnikov" value="[email protected]"/>
<entry key="stavrogin" value="[email protected]"/>
<entry key="porfiry" value="[email protected]"/>
</map>
</property>
</bean>
The preceding configuration uses a Spring FactoryBean
implementation (the
MapFactoryBean
) to create a java.util.Map
instance initialized with key-value pairs
taken from the supplied 'sourceMap'
.
The following example uses a <util:map/>
element to make a more concise representation:
<!-- creates a java.util.Map instance with the supplied key-value pairs -->
<util:map id="emails">
<entry key="pechorin" value="[email protected]"/>
<entry key="raskolnikov" value="[email protected]"/>
<entry key="stavrogin" value="[email protected]"/>
<entry key="porfiry" value="[email protected]"/>
</util:map>
You can also explicitly control the exact type of Map
that is instantiated and
populated by using the 'map-class'
attribute on the <util:map/>
element. For
example, if we really need a java.util.TreeMap
to be instantiated, we could use the
following configuration:
<util:map id="emails" map-class="java.util.TreeMap">
<entry key="pechorin" value="[email protected]"/>
<entry key="raskolnikov" value="[email protected]"/>
<entry key="stavrogin" value="[email protected]"/>
<entry key="porfiry" value="[email protected]"/>
</util:map>
If no 'map-class'
attribute is supplied, the container chooses a Map
implementation.
Consider the following example:
<!-- creates a java.util.Set instance with values loaded from the supplied 'sourceSet' -->
<bean id="emails" class="org.springframework.beans.factory.config.SetFactoryBean">
<property name="sourceSet">
<set>
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
</set>
</property>
</bean>
The preceding configuration uses a Spring FactoryBean
implementation (the
SetFactoryBean
) to create a java.util.Set
instance initialized with values taken
from the supplied sourceSet
.
The following example uses a <util:set/>
element to make a more concise representation:
<!-- creates a java.util.Set instance with the supplied values -->
<util:set id="emails">
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
</util:set>
You can also explicitly control the exact type of Set
that is instantiated and
populated by using the set-class
attribute on the <util:set/>
element. For
example, if we really need a java.util.TreeSet
to be instantiated, we could use the
following configuration:
<util:set id="emails" set-class="java.util.TreeSet">
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
<value>[email protected]</value>
</util:set>
If no set-class
attribute is supplied, the container chooses a Set
implementation.
The aop
tags deal with configuring all things AOP in Spring, including Spring’s
own proxy-based AOP framework and Spring’s integration with the AspectJ AOP framework.
These tags are comprehensively covered in the chapter entitled Aspect Oriented Programming with Spring.
In the interest of completeness, to use the tags in the aop
schema, you need to have
the following preamble at the top of your Spring XML configuration file (the text in the
snippet references the correct schema so that the tags in the aop
namespace
are available to you):
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="
http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop https://www.springframework.org/schema/aop/spring-aop.xsd">
<!-- bean definitions here -->
</beans>
The context
tags deal with ApplicationContext
configuration that relates to plumbing — that is, not usually beans that are important to an end-user but rather beans that do
a lot of the “grunt” work in Spring, such as BeanfactoryPostProcessors
. The following
snippet references the correct schema so that the elements in the context
namespace are
available to you:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context https://www.springframework.org/schema/context/spring-context.xsd">
<!-- bean definitions here -->
</beans>
This element activates the replacement of ${…}
placeholders, which are resolved against a
specified properties file (as a Spring resource location). This element
is a convenience mechanism that sets up a PropertySourcesPlaceholderConfigurer
for you. If you need more control over the specific
PropertySourcesPlaceholderConfigurer
setup, you can explicitly define it as a bean yourself.
This element activates the Spring infrastructure to detect annotations in bean classes:
-
Spring’s
@Configuration
model -
@Autowired
/@Inject
and@Value
-
JSR-250’s
@Resource
,@PostConstruct
and@PreDestroy
(if available) -
JPA’s
@PersistenceContext
and@PersistenceUnit
(if available) -
Spring’s
@EventListener
Alternatively, you can choose to explicitly activate the individual BeanPostProcessors
for those annotations.
Note
|
This element does not activate processing of Spring’s
@Transactional annotation;
you can use the <tx:annotation-driven/>
element for that purpose. Similarly, Spring’s
caching annotations need to be explicitly
enabled as well.
|
This element is detailed in the section on annotation-based container configuration.
This element is detailed in the section on load-time weaving with AspectJ in the Spring Framework.
This element is detailed in the section on using AspectJ to dependency inject domain objects with Spring.
This element is detailed in the section on configuring annotation-based MBean export.
Last but not least, we have the elements in the beans
schema. These elements
have been in Spring since the very dawn of the framework. Examples of the various elements
in the beans
schema are not shown here because they are quite comprehensively covered
in dependencies and configuration in detail
(and, indeed, in that entire chapter).
Note that you can add zero or more key-value pairs to <bean/>
XML definitions.
What, if anything, is done with this extra metadata is totally up to your own custom
logic (and so is typically only of use if you write your own custom elements as described
in the appendix entitled XML Schema Authoring).
The following example shows the <meta/>
element in the context of a surrounding <bean/>
(note that, without any logic to interpret it, the metadata is effectively useless
as it stands).
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="foo" class="x.y.Foo">
<meta key="cacheName" value="foo"/> (1)
<property name="name" value="Rick"/>
</bean>
</beans>
-
This is the example
meta
element
In the case of the preceding example, you could assume that there is some logic that consumes the bean definition and sets up some caching infrastructure that uses the supplied metadata.
Since version 2.0, Spring has featured a mechanism for adding schema-based extensions to the basic Spring XML format for defining and configuring beans. This section covers how to write your own custom XML bean definition parsers and integrate such parsers into the Spring IoC container.
To facilitate authoring configuration files that use a schema-aware XML editor, Spring’s extensible XML configuration mechanism is based on XML Schema. If you are not familiar with Spring’s current XML configuration extensions that come with the standard Spring distribution, you should first read the appendix entitled appendix.adoc.
To create new XML configuration extensions:
For a unified example, we create an
XML extension (a custom XML element) that lets us configure objects of the type
SimpleDateFormat
(from the java.text
package). When we are done,
we will be able to define bean definitions of type SimpleDateFormat
as follows:
<myns:dateformat id="dateFormat"
pattern="yyyy-MM-dd HH:mm"
lenient="true"/>
(We include much more detailed examples follow later in this appendix. The intent of this first simple example is to walk you through the basic steps of making a custom extension.)
Creating an XML configuration extension for use with Spring’s IoC container starts with
authoring an XML Schema to describe the extension. For our example, we use the following schema
to configure SimpleDateFormat
objects:
<!-- myns.xsd (inside package org/springframework/samples/xml) -->
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.mycompany.example/schema/myns"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:beans="http://www.springframework.org/schema/beans"
targetNamespace="http://www.mycompany.example/schema/myns"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:import namespace="http://www.springframework.org/schema/beans"/>
<xsd:element name="dateformat">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="beans:identifiedType"> (1)
<xsd:attribute name="lenient" type="xsd:boolean"/>
<xsd:attribute name="pattern" type="xsd:string" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:schema>
-
The indicated line contains an extension base for all identifiable tags (meaning they have an
id
attribute that we can use as the bean identifier in the container). We can use this attribute because we imported the Spring-providedbeans
namespace.
The preceding schema lets us configure SimpleDateFormat
objects directly in an
XML application context file by using the <myns:dateformat/>
element, as the following
example shows:
<myns:dateformat id="dateFormat"
pattern="yyyy-MM-dd HH:mm"
lenient="true"/>
Note that, after we have created the infrastructure classes, the preceding snippet of XML is essentially the same as the following XML snippet:
<bean id="dateFormat" class="java.text.SimpleDateFormat">
<constructor-arg value="yyyy-HH-dd HH:mm"/>
<property name="lenient" value="true"/>
</bean>
The second of the two preceding snippets
creates a bean in the container (identified by the name dateFormat
of type
SimpleDateFormat
) with a couple of properties set.
Note
|
The schema-based approach to creating configuration format allows for tight integration with an IDE that has a schema-aware XML editor. By using a properly authored schema, you can use autocompletion to let a user choose between several configuration options defined in the enumeration. |
In addition to the schema, we need a NamespaceHandler
to parse all elements of
this specific namespace that Spring encounters while parsing configuration files. For this example, the
NamespaceHandler
should take care of the parsing of the myns:dateformat
element.
The NamespaceHandler
interface features three methods:
-
init()
: Allows for initialization of theNamespaceHandler
and is called by Spring before the handler is used. -
BeanDefinition parse(Element, ParserContext)
: Called when Spring encounters a top-level element (not nested inside a bean definition or a different namespace). This method can itself register bean definitions, return a bean definition, or both. -
BeanDefinitionHolder decorate(Node, BeanDefinitionHolder, ParserContext)
: Called when Spring encounters an attribute or nested element of a different namespace. The decoration of one or more bean definitions is used (for example) with the scopes that Spring supports. We start by highlighting a simple example, without using decoration, after which we show decoration in a somewhat more advanced example.
Although you can code your own NamespaceHandler
for the entire
namespace (and hence provide code that parses each and every element in the namespace),
it is often the case that each top-level XML element in a Spring XML configuration file
results in a single bean definition (as in our case, where a single <myns:dateformat/>
element results in a single SimpleDateFormat
bean definition). Spring features a
number of convenience classes that support this scenario. In the following example, we
use the NamespaceHandlerSupport
class:
package org.springframework.samples.xml;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
public class MyNamespaceHandler extends NamespaceHandlerSupport {
public void init() {
registerBeanDefinitionParser("dateformat", new SimpleDateFormatBeanDefinitionParser());
}
}
package org.springframework.samples.xml
import org.springframework.beans.factory.xml.NamespaceHandlerSupport
class MyNamespaceHandler : NamespaceHandlerSupport {
override fun init() {
registerBeanDefinitionParser("dateformat", SimpleDateFormatBeanDefinitionParser())
}
}
You may notice that there is not actually a whole lot of parsing logic
in this class. Indeed, the NamespaceHandlerSupport
class has a built-in notion of
delegation. It supports the registration of any number of BeanDefinitionParser
instances, to which it delegates to when it needs to parse an element in its
namespace. This clean separation of concerns lets a NamespaceHandler
handle the
orchestration of the parsing of all of the custom elements in its namespace while
delegating to BeanDefinitionParsers
to do the grunt work of the XML parsing. This
means that each BeanDefinitionParser
contains only the logic for parsing a single
custom element, as we can see in the next step.
A BeanDefinitionParser
is used if the NamespaceHandler
encounters an XML
element of the type that has been mapped to the specific bean definition parser
(dateformat
in this case). In other words, the BeanDefinitionParser
is
responsible for parsing one distinct top-level XML element defined in the schema. In
the parser, we' have access to the XML element (and thus to its subelements, too) so that
we can parse our custom XML content, as you can see in the following example:
package org.springframework.samples.xml;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser;
import org.springframework.util.StringUtils;
import org.w3c.dom.Element;
import java.text.SimpleDateFormat;
public class SimpleDateFormatBeanDefinitionParser extends AbstractSingleBeanDefinitionParser { // (1)
protected Class getBeanClass(Element element) {
return SimpleDateFormat.class; // (2)
}
protected void doParse(Element element, BeanDefinitionBuilder bean) {
// this will never be null since the schema explicitly requires that a value be supplied
String pattern = element.getAttribute("pattern");
bean.addConstructorArgValue(pattern);
// this however is an optional property
String lenient = element.getAttribute("lenient");
if (StringUtils.hasText(lenient)) {
bean.addPropertyValue("lenient", Boolean.valueOf(lenient));
}
}
}
-
We use the Spring-provided
AbstractSingleBeanDefinitionParser
to handle a lot of the basic grunt work of creating a singleBeanDefinition
. -
We supply the
AbstractSingleBeanDefinitionParser
superclass with the type that our singleBeanDefinition
represents.
package org.springframework.samples.xml
import org.springframework.beans.factory.support.BeanDefinitionBuilder
import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser
import org.springframework.util.StringUtils
import org.w3c.dom.Element
import java.text.SimpleDateFormat
class SimpleDateFormatBeanDefinitionParser : AbstractSingleBeanDefinitionParser() { // (1)
override fun getBeanClass(element: Element): Class<*>? { // (2)
return SimpleDateFormat::class.java
}
override fun doParse(element: Element, bean: BeanDefinitionBuilder) {
// this will never be null since the schema explicitly requires that a value be supplied
val pattern = element.getAttribute("pattern")
bean.addConstructorArgValue(pattern)
// this however is an optional property
val lenient = element.getAttribute("lenient")
if (StringUtils.hasText(lenient)) {
bean.addPropertyValue("lenient", java.lang.Boolean.valueOf(lenient))
}
}
}
-
We use the Spring-provided
AbstractSingleBeanDefinitionParser
to handle a lot of the basic grunt work of creating a singleBeanDefinition
. -
We supply the
AbstractSingleBeanDefinitionParser
superclass with the type that our singleBeanDefinition
represents.
In this simple case, this is all that we need to do. The creation of our single
BeanDefinition
is handled by the AbstractSingleBeanDefinitionParser
superclass, as
is the extraction and setting of the bean definition’s unique identifier.
The coding is finished. All that remains to be done is to make the Spring XML
parsing infrastructure aware of our custom element. We do so by registering our custom
namespaceHandler
and custom XSD file in two special-purpose properties files. These
properties files are both placed in a META-INF
directory in your application and
can, for example, be distributed alongside your binary classes in a JAR file. The Spring
XML parsing infrastructure automatically picks up your new extension by consuming
these special properties files, the formats of which are detailed in the next two sections.
The properties file called spring.handlers
contains a mapping of XML Schema URIs to
namespace handler classes. For our example, we need to write the following:
http\://www.mycompany.example/schema/myns=org.springframework.samples.xml.MyNamespaceHandler
(The :
character is a valid delimiter in the Java properties format, so
:
character in the URI needs to be escaped with a backslash.)
The first part (the key) of the key-value pair is the URI associated with your custom
namespace extension and needs to exactly match exactly the value of the targetNamespace
attribute, as specified in your custom XSD schema.
The properties file called spring.schemas
contains a mapping of XML Schema locations
(referred to, along with the schema declaration, in XML files that use the schema as part
of the xsi:schemaLocation
attribute) to classpath resources. This file is needed
to prevent Spring from absolutely having to use a default EntityResolver
that requires
Internet access to retrieve the schema file. If you specify the mapping in this
properties file, Spring searches for the schema (in this case,
myns.xsd
in the org.springframework.samples.xml
package) on the classpath.
The following snippet shows the line we need to add for our custom schema:
http\://www.mycompany.example/schema/myns/myns.xsd=org/springframework/samples/xml/myns.xsd
(Remember that the :
character must be escaped.)
You are encouraged to deploy your XSD file (or files) right alongside
the NamespaceHandler
and BeanDefinitionParser
classes on the classpath.
Using a custom extension that you yourself have implemented is no different from using
one of the “custom” extensions that Spring provides. The following
example uses the custom <dateformat/>
element developed in the previous steps
in a Spring XML configuration file:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:myns="http://www.mycompany.example/schema/myns"
xsi:schemaLocation="
http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.mycompany.example/schema/myns http://www.mycompany.com/schema/myns/myns.xsd">
<!-- as a top-level bean -->
<myns:dateformat id="defaultDateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true"/> (1)
<bean id="jobDetailTemplate" abstract="true">
<property name="dateFormat">
<!-- as an inner bean -->
<myns:dateformat pattern="HH:mm MM-dd-yyyy"/>
</property>
</bean>
</beans>
-
Our custom bean.
This section presents some more detailed examples of custom XML extensions.
The example presented in this section shows how you to write the various artifacts required to satisfy a target of the following configuration:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:foo="http://www.foo.example/schema/component"
xsi:schemaLocation="
http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.foo.example/schema/component http://www.foo.example/schema/component/component.xsd">
<foo:component id="bionic-family" name="Bionic-1">
<foo:component name="Mother-1">
<foo:component name="Karate-1"/>
<foo:component name="Sport-1"/>
</foo:component>
<foo:component name="Rock-1"/>
</foo:component>
</beans>
The preceding configuration nests custom extensions within each other. The class
that is actually configured by the <foo:component/>
element is the Component
class (shown in the next example). Notice how the Component
class does not expose a
setter method for the components
property. This makes it hard (or rather impossible)
to configure a bean definition for the Component
class by using setter injection.
The following listing shows the Component
class:
package com.foo;
import java.util.ArrayList;
import java.util.List;
public class Component {
private String name;
private List<Component> components = new ArrayList<Component> ();
// mmm, there is no setter method for the 'components'
public void addComponent(Component component) {
this.components.add(component);
}
public List<Component> getComponents() {
return components;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
package com.foo
import java.util.ArrayList
class Component {
var name: String? = null
private val components = ArrayList<Component>()
// mmm, there is no setter method for the 'components'
fun addComponent(component: Component) {
this.components.add(component)
}
fun getComponents(): List<Component> {
return components
}
}
The typical solution to this issue is to create a custom FactoryBean
that exposes a
setter property for the components
property. The following listing shows such a custom
FactoryBean
:
package com.foo;
import org.springframework.beans.factory.FactoryBean;
import java.util.List;
public class ComponentFactoryBean implements FactoryBean<Component> {
private Component parent;
private List<Component> children;
public void setParent(Component parent) {
this.parent = parent;
}
public void setChildren(List<Component> children) {
this.children = children;
}
public Component getObject() throws Exception {
if (this.children != null && this.children.size() > 0) {
for (Component child : children) {
this.parent.addComponent(child);
}
}
return this.parent;
}
public Class<Component> getObjectType() {
return Component.class;
}
public boolean isSingleton() {
return true;
}
}
package com.foo
import org.springframework.beans.factory.FactoryBean
import org.springframework.stereotype.Component
class ComponentFactoryBean : FactoryBean<Component> {
private var parent: Component? = null
private var children: List<Component>? = null
fun setParent(parent: Component) {
this.parent = parent
}
fun setChildren(children: List<Component>) {
this.children = children
}
override fun getObject(): Component? {
if (this.children != null && this.children!!.isNotEmpty()) {
for (child in children!!) {
this.parent!!.addComponent(child)
}
}
return this.parent
}
override fun getObjectType(): Class<Component>? {
return Component::class.java
}
override fun isSingleton(): Boolean {
return true
}
}
This works nicely, but it exposes a lot of Spring plumbing to the end user. What we are going to do is write a custom extension that hides away all of this Spring plumbing. If we stick to the steps described previously, we start off by creating the XSD schema to define the structure of our custom tag, as the following listing shows:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.foo.example/schema/component"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.foo.example/schema/component"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="component">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="component"/>
</xsd:choice>
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="name" use="required" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>
Again following the process described earlier,
we then create a custom NamespaceHandler
:
package com.foo;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
public class ComponentNamespaceHandler extends NamespaceHandlerSupport {
public void init() {
registerBeanDefinitionParser("component", new ComponentBeanDefinitionParser());
}
}
package com.foo
import org.springframework.beans.factory.xml.NamespaceHandlerSupport
class ComponentNamespaceHandler : NamespaceHandlerSupport() {
override fun init() {
registerBeanDefinitionParser("component", ComponentBeanDefinitionParser())
}
}
Next up is the custom BeanDefinitionParser
. Remember that we are creating
a BeanDefinition
that describes a ComponentFactoryBean
. The following
listing shows our custom BeanDefinitionParser
implementation:
package com.foo;
import org.springframework.beans.factory.config.BeanDefinition;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.support.ManagedList;
import org.springframework.beans.factory.xml.AbstractBeanDefinitionParser;
import org.springframework.beans.factory.xml.ParserContext;
import org.springframework.util.xml.DomUtils;
import org.w3c.dom.Element;
import java.util.List;
public class ComponentBeanDefinitionParser extends AbstractBeanDefinitionParser {
protected AbstractBeanDefinition parseInternal(Element element, ParserContext parserContext) {
return parseComponentElement(element);
}
private static AbstractBeanDefinition parseComponentElement(Element element) {
BeanDefinitionBuilder factory = BeanDefinitionBuilder.rootBeanDefinition(ComponentFactoryBean.class);
factory.addPropertyValue("parent", parseComponent(element));
List<Element> childElements = DomUtils.getChildElementsByTagName(element, "component");
if (childElements != null && childElements.size() > 0) {
parseChildComponents(childElements, factory);
}
return factory.getBeanDefinition();
}
private static BeanDefinition parseComponent(Element element) {
BeanDefinitionBuilder component = BeanDefinitionBuilder.rootBeanDefinition(Component.class);
component.addPropertyValue("name", element.getAttribute("name"));
return component.getBeanDefinition();
}
private static void parseChildComponents(List<Element> childElements, BeanDefinitionBuilder factory) {
ManagedList<BeanDefinition> children = new ManagedList<BeanDefinition>(childElements.size());
for (Element element : childElements) {
children.add(parseComponentElement(element));
}
factory.addPropertyValue("children", children);
}
}
package com.foo
import org.springframework.beans.factory.config.BeanDefinition
import org.springframework.beans.factory.support.AbstractBeanDefinition
import org.springframework.beans.factory.support.BeanDefinitionBuilder
import org.springframework.beans.factory.support.ManagedList
import org.springframework.beans.factory.xml.AbstractBeanDefinitionParser
import org.springframework.beans.factory.xml.ParserContext
import org.springframework.util.xml.DomUtils
import org.w3c.dom.Element
import java.util.List
class ComponentBeanDefinitionParser : AbstractBeanDefinitionParser() {
override fun parseInternal(element: Element, parserContext: ParserContext): AbstractBeanDefinition? {
return parseComponentElement(element)
}
private fun parseComponentElement(element: Element): AbstractBeanDefinition {
val factory = BeanDefinitionBuilder.rootBeanDefinition(ComponentFactoryBean::class.java)
factory.addPropertyValue("parent", parseComponent(element))
val childElements = DomUtils.getChildElementsByTagName(element, "component")
if (childElements != null && childElements.size > 0) {
parseChildComponents(childElements, factory)
}
return factory.getBeanDefinition()
}
private fun parseComponent(element: Element): BeanDefinition {
val component = BeanDefinitionBuilder.rootBeanDefinition(Component::class.java)
component.addPropertyValue("name", element.getAttribute("name"))
return component.beanDefinition
}
private fun parseChildComponents(childElements: List<Element>, factory: BeanDefinitionBuilder) {
val children = ManagedList<BeanDefinition>(childElements.size)
for (element in childElements) {
children.add(parseComponentElement(element))
}
factory.addPropertyValue("children", children)
}
}
Finally, the various artifacts need to be registered with the Spring XML infrastructure,
by modifying the META-INF/spring.handlers
and META-INF/spring.schemas
files, as follows:
# in 'META-INF/spring.handlers' http\://www.foo.example/schema/component=com.foo.ComponentNamespaceHandler
# in 'META-INF/spring.schemas' http\://www.foo.example/schema/component/component.xsd=com/foo/component.xsd
Writing your own custom parser and the associated artifacts is not hard. However, it is sometimes not the right thing to do. Consider a scenario where you need to add metadata to already existing bean definitions. In this case, you certainly do not want to have to write your own entire custom extension. Rather, you merely want to add an additional attribute to the existing bean definition element.
By way of another example, suppose that you define a bean definition for a service object that (unknown to it) accesses a clustered JCache, and you want to ensure that the named JCache instance is eagerly started within the surrounding cluster. The following listing shows such a definition:
<bean id="checkingAccountService" class="com.foo.DefaultCheckingAccountService"
jcache:cache-name="checking.account">
<!-- other dependencies here... -->
</bean>
We can then create another BeanDefinition
when the
'jcache:cache-name'
attribute is parsed. This BeanDefinition
then initializes
the named JCache for us. We can also modify the existing BeanDefinition
for the
'checkingAccountService'
so that it has a dependency on this new
JCache-initializing BeanDefinition
. The following listing shows our JCacheInitializer
:
package com.foo;
public class JCacheInitializer {
private String name;
public JCacheInitializer(String name) {
this.name = name;
}
public void initialize() {
// lots of JCache API calls to initialize the named cache...
}
}
package com.foo
class JCacheInitializer(private val name: String) {
fun initialize() {
// lots of JCache API calls to initialize the named cache...
}
}
Now we can move onto the custom extension. First, we need to author the XSD schema that describes the custom attribute, as follows:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.foo.example/schema/jcache"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.foo.example/schema/jcache"
elementFormDefault="qualified">
<xsd:attribute name="cache-name" type="xsd:string"/>
</xsd:schema>
Next, we need to create the associated NamespaceHandler
, as follows:
package com.foo;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
public class JCacheNamespaceHandler extends NamespaceHandlerSupport {
public void init() {
super.registerBeanDefinitionDecoratorForAttribute("cache-name",
new JCacheInitializingBeanDefinitionDecorator());
}
}
package com.foo
import org.springframework.beans.factory.xml.NamespaceHandlerSupport
class JCacheNamespaceHandler : NamespaceHandlerSupport() {
override fun init() {
super.registerBeanDefinitionDecoratorForAttribute("cache-name",
JCacheInitializingBeanDefinitionDecorator())
}
}
Next, we need to create the parser. Note that, in this case, because we are going to parse
an XML attribute, we write a BeanDefinitionDecorator
rather than a BeanDefinitionParser
.
The following listing shows our BeanDefinitionDecorator
implementation:
package com.foo;
import org.springframework.beans.factory.config.BeanDefinitionHolder;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.BeanDefinitionDecorator;
import org.springframework.beans.factory.xml.ParserContext;
import org.w3c.dom.Attr;
import org.w3c.dom.Node;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class JCacheInitializingBeanDefinitionDecorator implements BeanDefinitionDecorator {
private static final String[] EMPTY_STRING_ARRAY = new String[0];
public BeanDefinitionHolder decorate(Node source, BeanDefinitionHolder holder,
ParserContext ctx) {
String initializerBeanName = registerJCacheInitializer(source, ctx);
createDependencyOnJCacheInitializer(holder, initializerBeanName);
return holder;
}
private void createDependencyOnJCacheInitializer(BeanDefinitionHolder holder,
String initializerBeanName) {
AbstractBeanDefinition definition = ((AbstractBeanDefinition) holder.getBeanDefinition());
String[] dependsOn = definition.getDependsOn();
if (dependsOn == null) {
dependsOn = new String[]{initializerBeanName};
} else {
List dependencies = new ArrayList(Arrays.asList(dependsOn));
dependencies.add(initializerBeanName);
dependsOn = (String[]) dependencies.toArray(EMPTY_STRING_ARRAY);
}
definition.setDependsOn(dependsOn);
}
private String registerJCacheInitializer(Node source, ParserContext ctx) {
String cacheName = ((Attr) source).getValue();
String beanName = cacheName + "-initializer";
if (!ctx.getRegistry().containsBeanDefinition(beanName)) {
BeanDefinitionBuilder initializer = BeanDefinitionBuilder.rootBeanDefinition(JCacheInitializer.class);
initializer.addConstructorArg(cacheName);
ctx.getRegistry().registerBeanDefinition(beanName, initializer.getBeanDefinition());
}
return beanName;
}
}
package com.foo
import org.springframework.beans.factory.config.BeanDefinitionHolder
import org.springframework.beans.factory.support.AbstractBeanDefinition
import org.springframework.beans.factory.support.BeanDefinitionBuilder
import org.springframework.beans.factory.xml.BeanDefinitionDecorator
import org.springframework.beans.factory.xml.ParserContext
import org.w3c.dom.Attr
import org.w3c.dom.Node
import java.util.ArrayList
class JCacheInitializingBeanDefinitionDecorator : BeanDefinitionDecorator {
override fun decorate(source: Node, holder: BeanDefinitionHolder,
ctx: ParserContext): BeanDefinitionHolder {
val initializerBeanName = registerJCacheInitializer(source, ctx)
createDependencyOnJCacheInitializer(holder, initializerBeanName)
return holder
}
private fun createDependencyOnJCacheInitializer(holder: BeanDefinitionHolder,
initializerBeanName: String) {
val definition = holder.beanDefinition as AbstractBeanDefinition
var dependsOn = definition.dependsOn
dependsOn = if (dependsOn == null) {
arrayOf(initializerBeanName)
} else {
val dependencies = ArrayList(listOf(*dependsOn))
dependencies.add(initializerBeanName)
dependencies.toTypedArray()
}
definition.setDependsOn(*dependsOn)
}
private fun registerJCacheInitializer(source: Node, ctx: ParserContext): String {
val cacheName = (source as Attr).value
val beanName = "$cacheName-initializer"
if (!ctx.registry.containsBeanDefinition(beanName)) {
val initializer = BeanDefinitionBuilder.rootBeanDefinition(JCacheInitializer::class.java)
initializer.addConstructorArg(cacheName)
ctx.registry.registerBeanDefinition(beanName, initializer.getBeanDefinition())
}
return beanName
}
}
Finally, we need to register the various artifacts with the Spring XML infrastructure
by modifying the META-INF/spring.handlers
and META-INF/spring.schemas
files, as follows:
# in 'META-INF/spring.handlers' http\://www.foo.example/schema/jcache=com.foo.JCacheNamespaceHandler
# in 'META-INF/spring.schemas' http\://www.foo.example/schema/jcache/jcache.xsd=com/foo/jcache.xsd
This part of the appendix lists the existing StartupSteps
that the core container is instrumented with.
Warning
|
The name and detailed information about each startup step is not part of the public contract and is subject to change; this is considered as an implementation detail of the core container and will follow its behavior changes. |
Name | Description | Tags |
---|---|---|
|
Instantiation of a bean and its dependencies. |
|
|
Initialization of |
|
|
Creation of the |
|
|
Scanning of base packages. |
|
|
Beans post-processing phase. |
|
|
Invocation of the |
|
|
Invocation of the |
|
|
Registration of component classes through |
|
|
Enhancement of configuration classes with CGLIB proxies. |
|
|
Configuration classes parsing phase with the |
|
|
Application context refresh phase. |
|
|
Invocation of event listeners, if done in the main thread. |
|