forked from Gregable/pq-trees
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpqtree.cc
806 lines (717 loc) · 28.1 KB
/
pqtree.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
// This file is part of the PQ Tree library.
//
// The PQ Tree library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by the
// Free Software Foundation, either version 3 of the License, or (at your
// option) any later version.
//
// The PQ Tree Library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with the PQ Tree Library. If not, see <http://www.gnu.org/licenses/>.
#include "pqtree.h"
#include <assert.h>
PQTree::PQTree(const PQTree& to_copy) {
CopyFrom(to_copy);
}
PQTree& PQTree::operator=(const PQTree& to_copy) {
if (&to_copy != this)
CopyFrom(to_copy);
return *this;
}
void PQTree::CopyFrom(const PQTree& to_copy) {
root_ = new PQNode(*to_copy.root_);
block_count_ = to_copy.block_count_;
blocked_nodes_ = to_copy.blocked_nodes_;
invalid_ = to_copy.invalid_;
off_the_top_ = to_copy.off_the_top_;
pseudonode_ = NULL;
reductions_ = to_copy.reductions_;
leaf_address_.clear();
root_->FindLeaves(leaf_address_);
}
int PQTree::UnblockSiblings(PQNode* candidate_node) {
assert (candidate_node->mark_ == PQNode::unblocked);
int unblocked_count = 0;
for (int i = 0; i < 2 && candidate_node->immediate_siblings_[i]; ++i) {
PQNode* sibling = candidate_node->immediate_siblings_[i];
if (sibling->mark_ == PQNode::blocked) {
sibling->parent_ = candidate_node->parent_;
sibling->mark_ = PQNode::unblocked;
unblocked_count++;
unblocked_count += UnblockSiblings(sibling);
}
}
return unblocked_count;
}
// All the different templates for matching a reduce are below. The template
// has a letter describing which type of node it refers to and a number
// indicating the index of the template for that letter. These are the same
// indices found in the Booth & Lueker paper.
//
// Each template method is called in order within the reduce phase. The
// template method determines if the Node passed to it is of the form that the
// template method can reduce. If so, the method processes the Node and returns
// true. If not, the method makes no changes and returns false. Methods
// should be attempted in order until one of them returns true and then the
// remainder of the methods should be skipped. The template ordering is:
// L1, P1, P2, P3, P4, P5, P6, Q1, Q2, Q3
bool PQTree::TemplateL1(PQNode* candidate_node) {
// L1's pattern is simple: the node is a leaf node.
if (candidate_node->type_ != PQNode::leaf)
return false;
candidate_node->LabelAsFull();
return true;
}
bool PQTree::TemplateQ1(PQNode* candidate_node) {
// Q1's Pattern is a Q-Node that has only full children.
if (candidate_node->type_ != PQNode::qnode)
return false;
for (QNodeChildrenIterator it(candidate_node); !it.IsDone(); it.Next()) {
if (it.Current()->label_ != PQNode::full)
return false;
}
candidate_node->LabelAsFull();
return true;
}
bool PQTree::TemplateQ2(PQNode* candidate_node) {
// Q2's pattern is a Q-Node that either:
// 1) contains consecutive full children with one end of the consecutive
// ordering being one of |candidate_node|'s |endmost_children|, also full.
// 2) contains a single partial child that is one of |candidate_node|'s
// |endmost_children|.
// 3) One of |candidate_node|'s |endmost_childdren| is full, consecutively
// followed by 0 or more full children, followed by one partial child.
if (candidate_node->type_ != PQNode::qnode ||
candidate_node->pseudonode_ ||
candidate_node->partial_children_.size() > 1 ||
!candidate_node->ConsecutiveFullPartialChildren())
return false;
bool has_partial = candidate_node->partial_children_.size() > 0;
bool has_full = candidate_node->full_children_.size() > 0;
if (has_full && !candidate_node->EndmostChildWithLabel(PQNode::full))
return false;
if (!has_full && !candidate_node->EndmostChildWithLabel(PQNode::partial))
return false;
// If there is a partial child, merge it's children into the candidate_node.
if (has_partial) {
PQNode* to_merge = *candidate_node->partial_children_.begin();
for (int i = 0; i < 2; ++i) {
PQNode* child = to_merge->endmost_children_[i];
PQNode* sibling = to_merge->ImmediateSiblingWithLabel(child->label_);
if (sibling) {
sibling->ReplaceImmediateSibling(to_merge, child);
} else {
candidate_node->ReplaceEndmostChild(to_merge, child);
child->parent_ = candidate_node;
}
}
to_merge->ForgetChildren();
delete to_merge;
}
candidate_node->label_ = PQNode::partial;
if (candidate_node->parent_)
candidate_node->parent_->partial_children_.insert(candidate_node);
return true;
}
bool PQTree::TemplateQ3(PQNode* candidate_node) {
// Q3's pattern is a Q-Node that contains 0-2 partial children. It can
// contain any number of empty and full children, but any full children must
// be consecutive and sandwiched between any partial children. Unlike Q2,
// the consecutive full and partial children need not be endmost children.
if (candidate_node->type_ != PQNode::qnode ||
candidate_node->partial_children_.size() > 2 ||
!candidate_node->ConsecutiveFullPartialChildren())
return false;
// Merge each of the partial children into |candidate_node|'s children
for (set<PQNode*>::iterator j = candidate_node->partial_children_.begin();
j != candidate_node->partial_children_.end(); j++) {
PQNode* to_merge = *j;
for (int i = 0; i < 2; ++i) {
PQNode* sibling = to_merge->immediate_siblings_[i];
if (sibling) {
PQNode* child = to_merge->EndmostChildWithLabel(sibling->label_);
if (!child)
child = to_merge->EndmostChildWithLabel(PQNode::full);
sibling->ReplaceImmediateSibling(to_merge, child);
} else {
PQNode* empty_child = to_merge->EndmostChildWithLabel(PQNode::empty);
empty_child->parent_ = candidate_node;
candidate_node->ReplaceEndmostChild(to_merge, empty_child);
}
}
to_merge->ForgetChildren();
delete to_merge;
}
return true;
}
// A note here. An error in the Booth and Leuker Algorithm fails to consider
// the case where a P-node is full, is the pertinent root, and is not an endmost
// child of a q-node. In this case, we need to know that the P-node is a
// pertinent root and not try to update its parent whose pointer is possibly
// invalid.
bool PQTree::TemplateP1(PQNode* candidate_node, bool is_reduction_root) {
// P1's pattern is a P-Node with all full children.
if (candidate_node->type_ != PQNode::pnode ||
candidate_node->full_children_.size() != candidate_node->ChildCount())
return false;
candidate_node->label_ = PQNode::full;
if (!is_reduction_root)
candidate_node->parent_->full_children_.insert(candidate_node);
return true;
}
bool PQTree::TemplateP2(PQNode* candidate_node) {
// P2's pattern is a P-Node at the root of the perinent subtree containing
// both empty and full children.
if (candidate_node->type_ != PQNode::pnode ||
!candidate_node->partial_children_.empty())
return false;
// Move candidate_node's full children into their own P-node
if (candidate_node->full_children_.size() >= 2) {
PQNode* new_pnode = new PQNode;
new_pnode->type_ = PQNode::pnode;
new_pnode->parent_ = candidate_node;
candidate_node->MoveFullChildren(new_pnode);
candidate_node->circular_link_.push_back(new_pnode);
}
// Mark the root partial
candidate_node->label_ = PQNode::partial;
return true;
}
bool PQTree::TemplateP3(PQNode* candidate_node) {
// P3's pattern is a P-Node not at the root of the perinent subtree
// containing both empty and full children.
if (candidate_node->type_ != PQNode::pnode ||
!candidate_node->partial_children_.empty())
return false;
// P3's replacement is to create a Q-node that places all of the full
// elements in a single P-Node child and all of the empty elements in a
// single Q-Node child. This new Q-Node is called a pseudonode as it isn't
// properly formed (Q-Nodes should have at least 3 children) and will not
// survive in it's current form to the end of the reduction.
PQNode* new_qnode = new PQNode;
new_qnode->type_ = PQNode::qnode;
new_qnode->label_ = PQNode::partial;
candidate_node->parent_->ReplacePartialChild(candidate_node, new_qnode);
// Set up a |full_child| of |new_qnode| containing all of |candidate_node|'s
// full children.
PQNode* full_child;
if (candidate_node->full_children_.size() == 1) {
full_child = *candidate_node->full_children_.begin();
candidate_node->circular_link_.remove(full_child);
} else {
full_child = new PQNode;
full_child->type_ = PQNode::pnode;
full_child->label_ = PQNode::full;
candidate_node->MoveFullChildren(full_child);
}
full_child->parent_ = new_qnode;
full_child->label_ = PQNode::full;
new_qnode->endmost_children_[0] = full_child;
new_qnode->full_children_.insert(full_child);
// Set up a |empty_child| of |new_qnode| containing all of |candidate_node|'s
// empty children.
PQNode* empty_child;
if (candidate_node->circular_link_.size() == 1) {
empty_child = *candidate_node->circular_link_.begin();
candidate_node->circular_link_.clear();
delete candidate_node;
} else {
empty_child = candidate_node;
}
empty_child->parent_ = new_qnode;
empty_child->label_ = PQNode::empty;
new_qnode->endmost_children_[1] = empty_child;
// Update the immediate siblings links (erasing the old ones if present)
empty_child->immediate_siblings_[0] = full_child;
full_child->immediate_siblings_[0] = empty_child;
return true;
}
bool PQTree::TemplateP4(PQNode* candidate_node) {
// P4's pattern is a P-Node at the root of the perinent subtree containing
// one partial child and any number of empty/full children.
if (candidate_node->type_ != PQNode::pnode ||
candidate_node->partial_children_.size() != 1)
return false;
PQNode* partial_qnode = *candidate_node->partial_children_.begin();
PQNode* empty_child = partial_qnode->EndmostChildWithLabel(PQNode::empty);
PQNode* full_child = partial_qnode->EndmostChildWithLabel(PQNode::full);
if (!empty_child || !full_child)
return false;
// Move the full children of |candidate_node| to children of |partial_qnode|.
// TODO: Lots of redundancy between lines 271-287, 326-342, and 345-359.
if (!candidate_node->full_children_.empty()) {
PQNode *full_children_root;
if (candidate_node->full_children_.size() == 1) {
full_children_root = *(candidate_node->full_children_.begin());
candidate_node->circular_link_.remove(full_children_root);
} else {
full_children_root = new PQNode;
full_children_root->type_ = PQNode::pnode;
full_children_root->label_ = PQNode::full;
candidate_node->MoveFullChildren(full_children_root);
}
full_children_root->parent_ = partial_qnode;
partial_qnode->ReplaceEndmostChild(full_child, full_children_root);
partial_qnode->full_children_.insert(full_children_root);
full_child->AddImmediateSibling(full_children_root);
full_children_root->AddImmediateSibling(full_child);
}
// If |candidate_node| now only has one child, get rid of |candidate_node|.
if (candidate_node->circular_link_.size() == 1) {
if (candidate_node->Parent()) {
candidate_node->parent_->ReplaceChild(candidate_node, partial_qnode);
} else {
partial_qnode->parent_ = NULL;
if (root_ == candidate_node) {
root_ = partial_qnode;
} else {
for (int i = 0; i < 2; ++i) {
PQNode *sibling = candidate_node->immediate_siblings_[i];
sibling->ReplaceImmediateSibling(candidate_node, partial_qnode);
}
}
}
candidate_node->circular_link_.clear();
delete candidate_node;
}
return true;
}
bool PQTree::TemplateP5(PQNode* candidate_node) {
// P4's pattern is a P-Node not at the root of the perinent subtree
// containing one partial child and any number of empty/full children.
if (candidate_node->type_ != PQNode::pnode ||
candidate_node->partial_children_.size() != 1)
return false;
// |partial_qnode| will become the pertinent subtree root after replacement.
PQNode* partial_qnode = *candidate_node->partial_children_.begin();
assert(partial_qnode->type_ == PQNode::qnode);
PQNode* empty_child = partial_qnode->EndmostChildWithLabel(PQNode::empty);
PQNode* full_child = partial_qnode->EndmostChildWithLabel(PQNode::full);
PQNode* empty_sibling = candidate_node->CircularChildWithLabel(PQNode::empty);
if (!empty_child || !full_child)
return false;
// Move partial_qnode from candidate_node's child to it's parent's child
candidate_node->parent_->ReplaceChild(candidate_node, partial_qnode);
partial_qnode->pertinent_leaf_count = candidate_node->pertinent_leaf_count;
candidate_node->circular_link_.remove(partial_qnode);
// Move the full children of |candidate_node| to children of |partial_qnode|.
if (!candidate_node->full_children_.empty()) {
PQNode *full_children_root;
if (candidate_node->full_children_.size() == 1) {
full_children_root = *candidate_node->full_children_.begin();
candidate_node->circular_link_.remove(full_children_root);
} else {
full_children_root = new PQNode;
full_children_root->type_ = PQNode::pnode;
full_children_root->label_ = PQNode::full;
candidate_node->MoveFullChildren(full_children_root);
}
full_children_root->parent_ = partial_qnode;
full_child->AddImmediateSibling(full_children_root);
full_children_root->AddImmediateSibling(full_child);
partial_qnode->ReplaceEndmostChild(full_child, full_children_root);
}
// If candidate_node still has some empty children, insert them
if (candidate_node->ChildCount()) {
PQNode *empty_children_root;
if (candidate_node->ChildCount() == 1) {
empty_children_root = empty_sibling;
} else {
empty_children_root = candidate_node;
empty_children_root->label_ = PQNode::empty;
empty_children_root->ClearImmediateSiblings();
}
empty_children_root->parent_ = partial_qnode;
empty_child->AddImmediateSibling(empty_children_root);
empty_children_root->AddImmediateSibling(empty_child);
partial_qnode->ReplaceEndmostChild(empty_child, empty_children_root);
}
if (candidate_node->ChildCount() < 2) {
// We want to delete candidate_node, but not it's children.
candidate_node->circular_link_.clear();
delete candidate_node;
}
return true;
}
bool PQTree::TemplateP6(PQNode* candidate_node) {
if (candidate_node->type_ != PQNode::pnode ||
candidate_node->partial_children_.size() != 2)
return false;
// TODO: Convert these to an array so we don't have 2 of everything.
PQNode* partial_qnode1 = *candidate_node->partial_children_.begin();
PQNode* partial_qnode2 = *(++(candidate_node->partial_children_.begin()));
PQNode* empty_child1 = partial_qnode1->EndmostChildWithLabel(PQNode::empty);
PQNode* full_child1 = partial_qnode1->EndmostChildWithLabel(PQNode::full);
if (!empty_child1 || !full_child1)
return false;
PQNode* empty_child2 = partial_qnode2->EndmostChildWithLabel(PQNode::empty);
PQNode* full_child2 = partial_qnode2->EndmostChildWithLabel(PQNode::full);
if (!empty_child2 || !full_child2)
return false;
// Move the full children of candidate_node to be children of partial_qnode1
if (!candidate_node->full_children_.empty()) {
PQNode *full_children_root = NULL;
if (candidate_node->full_children_.size() == 1) {
full_children_root = *candidate_node->full_children_.begin();
candidate_node->circular_link_.remove(full_children_root);
} else {
// create full_children_root to be a new p-node
full_children_root = new PQNode;
full_children_root->type_ = PQNode::pnode;
full_children_root->label_ = PQNode::full;
candidate_node->MoveFullChildren(full_children_root);
}
full_children_root->parent_ = partial_qnode1;
full_child2->parent_ = partial_qnode1;
full_child1->AddImmediateSibling(full_children_root);
full_child2->AddImmediateSibling(full_children_root);
full_children_root->AddImmediateSibling(full_child1);
full_children_root->AddImmediateSibling(full_child2);
} else {
full_child1->AddImmediateSibling(full_child2);
full_child2->AddImmediateSibling(full_child1);
}
partial_qnode1->ReplaceEndmostChild(full_child1, empty_child2);
empty_child2->parent_ = partial_qnode1;
// We dont need |partial_qnode2| any more
candidate_node->circular_link_.remove(partial_qnode2);
partial_qnode2->ForgetChildren();
delete partial_qnode2;
// If |candidate_node| now only has one child, get rid of |candidate_node|.
if (candidate_node->circular_link_.size() == 1) {
partial_qnode1->parent_ = candidate_node->parent_;
partial_qnode1->pertinent_leaf_count = candidate_node->pertinent_leaf_count;
partial_qnode1->label_ = PQNode::partial;
if (candidate_node->parent_) {
candidate_node->parent_->partial_children_.insert(partial_qnode1);
if (candidate_node->parent_->type_ == PQNode::pnode) {
candidate_node->parent_->ReplaceCircularLink(candidate_node,
partial_qnode1);
} else {
for (int i = 0; i < 2 && candidate_node->immediate_siblings_[i]; ++i) {
PQNode* sibling = candidate_node->immediate_siblings_[i];
sibling->ReplaceImmediateSibling(candidate_node, partial_qnode1);
}
candidate_node->parent_->ReplaceEndmostChild(candidate_node,
partial_qnode1);
}
} else {
root_ = partial_qnode1;
partial_qnode1->parent_ = NULL;
// Delete candidate_node, but not it's children.
candidate_node->circular_link_.clear();
delete candidate_node;
}
}
return true;
}
// This procedure is the first pass of the Booth & Leuker PQTree algorithm.
// It processes the pertinent subtree of the PQ-Tree to determine the mark
// of every node in that subtree.
bool PQTree::Bubble(set<int> reduction_set) {
queue<PQNode*> q;
block_count_ = 0;
blocked_nodes_ = 0;
off_the_top_ = 0;
// Stores blocked nodes
set<PQNode*> blocked_list;
// Insert the set's leaves into the queue
for (set<int>::iterator i = reduction_set.begin();
i != reduction_set.end(); ++i) {
PQNode *temp = leaf_address_[*i];
assert (temp);
q.push(temp);
}
while (q.size() + block_count_ + off_the_top_ > 1) {
if (q.empty())
return false;
PQNode* candidate_node = q.front();
q.pop();
candidate_node->mark_ = PQNode::blocked;
// Get the set of blocked and PQNode::unblocked siblings
set<PQNode*> unblocked_siblings;
set<PQNode*> blocked_siblings;
for (int i = 0; i < 2 && candidate_node->immediate_siblings_[i]; ++i) {
PQNode* sibling = candidate_node->immediate_siblings_[i];
if (sibling->mark_ == PQNode::blocked) {
blocked_siblings.insert(sibling);
} else if (sibling->mark_ == PQNode::unblocked) {
unblocked_siblings.insert(sibling);
}
}
// We can unblock |candidate_node| if any of there conditions is met:
// - 1 or more of its immediate siblings is unblocked.
// - It has 1 immediate sibling meaning it is a corner child of a q node.
// - It has 0 immediate siblings meaning it is a p node.
if (!unblocked_siblings.empty()) {
candidate_node->parent_ = (*unblocked_siblings.begin())->parent_;
candidate_node->mark_ = PQNode::unblocked;
} else if (candidate_node->ImmediateSiblingCount() < 2) {
candidate_node->mark_ = PQNode::unblocked;
}
// If |candidate_node| is unblocked, we can process it.
if (candidate_node->mark_ == PQNode::unblocked) {
if (!blocked_siblings.empty()) {
int list_size = UnblockSiblings(candidate_node);
candidate_node->parent_->pertinent_child_count += list_size;
blocked_nodes_ -= list_size;
}
if (!candidate_node->parent_) {
off_the_top_ = 1;
} else {
candidate_node->parent_->pertinent_child_count++;
if (candidate_node->parent_->mark_ == PQNode::unmarked) {
q.push(candidate_node->parent_);
candidate_node->parent_->mark_ = PQNode::queued;
}
}
block_count_ -= blocked_siblings.size();
} else {
block_count_ += 1 - blocked_siblings.size();
blocked_nodes_ += 1;
blocked_list.insert(candidate_node);
}
}
if (block_count_ > 1 || (off_the_top_ == 1 && block_count_ != 0))
return false;
// In this case, we have a block that is contained within a Q-node. We must
// assign a psuedonode to handle it.
if (block_count_ == 1 && blocked_nodes_ > 1) {
pseudonode_ = new PQNode;
pseudonode_->type_ = PQNode::qnode;
pseudonode_->pseudonode_ = true;
pseudonode_->pertinent_child_count = 0;
// Find the blocked nodes and which of those are endmost children.
int side = 0;
for (set<PQNode*>::iterator i = blocked_list.begin();
i != blocked_list.end(); ++i) {
PQNode* blocked = *i;
if (blocked->mark_ == PQNode::blocked) { // may have become unblocked
pseudonode_->pertinent_child_count++;
pseudonode_->pertinent_leaf_count += blocked->pertinent_leaf_count;
for (int j = 0; j < 2; ++j) {
PQNode* sibling = blocked->immediate_siblings_[j];
if (sibling->mark_ == PQNode::unmarked) {
blocked->RemoveImmediateSibling(sibling);
sibling->RemoveImmediateSibling(blocked);
pseudonode_->pseudo_neighbors_[side] = sibling;
pseudonode_->endmost_children_[side++] = blocked;
break;
}
}
blocked->parent_ = pseudonode_;
blocked->pseudochild_ = true;
}
}
q.push(pseudonode_);
}
return true;
}
bool PQTree::ReduceStep(set<int> reduction_set) {
// Build a queue with all the pertinent leaves in it
queue<PQNode*> q;
for (set<int>::iterator i = reduction_set.begin();
i != reduction_set.end(); i++) {
PQNode* candidate_node = leaf_address_[*i];
if (candidate_node == NULL)
return false;
candidate_node->pertinent_leaf_count = 1;
q.push(candidate_node);
}
while (!q.empty()) {
// Remove candidate_node from the front of the queue
PQNode* candidate_node = q.front();
q.pop();
// We test against different templates depending on whether |candidate_node|
// is the root of the pertinent subtree.
if (candidate_node->pertinent_leaf_count < reduction_set.size()) {
PQNode* candidate_parent = candidate_node->parent_;
candidate_parent->pertinent_leaf_count +=
candidate_node->pertinent_leaf_count;
candidate_parent->pertinent_child_count--;
// Push |candidate_parent| onto the queue if it no longer has any
// pertinent children.
if (candidate_parent->pertinent_child_count == 0)
q.push(candidate_parent);
// Test against each template in turn until one of them returns true.
if (TemplateL1(candidate_node)) {}
else if (TemplateP1(candidate_node, /*is_reduction_root=*/ false)) {}
else if (TemplateP3(candidate_node)) {}
else if (TemplateP5(candidate_node)) {}
else if (TemplateQ1(candidate_node)) {}
else if (TemplateQ2(candidate_node)) {}
else {
CleanPseudo();
return false;
}
} else { // candidate_node is the root of the reduction subtree
// Test against each template in turn until one of them returns true.
if (TemplateL1(candidate_node)) {}
else if (TemplateP1(candidate_node, /*is_reduction_root=*/ true)) {}
else if (TemplateP2(candidate_node)) {}
else if (TemplateP4(candidate_node)) {}
else if (TemplateP6(candidate_node)) {}
else if (TemplateQ1(candidate_node)) {}
else if (TemplateQ2(candidate_node)) {}
else if (TemplateQ3(candidate_node)) {}
else {
CleanPseudo();
return false;
}
}
}
CleanPseudo();
return true;
}
void PQTree::CleanPseudo() {
if (pseudonode_) {
// The parents of these nodes should be ignored in the next round, but
// pointers to the pseudonode which has been deleted make me nervous, so
// null them all out.
PQNode *last = NULL;
PQNode *current = pseudonode_->endmost_children_[0];
while (current) {
current->parent_ = NULL;
PQNode *next = current->QNextChild(last);
last = current;
current = next;
}
for (int i = 0; i < 2; i++) {
pseudonode_->endmost_children_[i]->AddImmediateSibling(
pseudonode_->pseudo_neighbors_[i]);
pseudonode_->pseudo_neighbors_[i]->AddImmediateSibling(
pseudonode_->endmost_children_[i]);
}
pseudonode_->ForgetChildren();
delete pseudonode_;
pseudonode_ = NULL;
}
}
// Basic constructor from an initial set.
PQTree::PQTree(set<int> reduction_set) {
// Set up the root node as a P-Node initially.
root_ = new PQNode;
root_->type_ = PQNode::pnode;
invalid_ = false;
pseudonode_ = NULL;
block_count_ = 0;
blocked_nodes_ = 0;
off_the_top_ = 0;
for (set<int>::iterator i = reduction_set.begin();
i != reduction_set.end(); i++) {
PQNode *new_node;
new_node = new PQNode(*i);
leaf_address_[*i] = new_node;
new_node->parent_ = root_;
new_node->type_ = PQNode::leaf;
root_->circular_link_.push_back(new_node);
}
}
PQNode* PQTree::Root() {
return root_;
}
string PQTree::Print() const {
string out;
root_->Print(&out);
return out;
}
//reduces the tree but protects if from becoming invalid
//if the reduction fails, takes more time
bool PQTree::SafeReduce(set<int> S) {
//using a backup copy to enforce safety
PQTree toCopy(*this);
if (!Reduce(S)) {
//reduce failed, so perform a copy
root_ = new PQNode(*toCopy.root_);
block_count_ = toCopy.block_count_;
blocked_nodes_ = toCopy.blocked_nodes_;
off_the_top_ = toCopy.off_the_top_;
invalid_ = toCopy.invalid_;
leaf_address_.clear();
root_->FindLeaves(leaf_address_);
return false;
}
return true;
}
bool PQTree::SafeReduceAll(list<set<int> > L) {
//using a backup copy to enforce safety
PQTree toCopy(*this);
if (!ReduceAll(L)) {
//reduce failed, so perform a copy
root_ = new PQNode(*toCopy.root_);
block_count_ = toCopy.block_count_;
blocked_nodes_ = toCopy.blocked_nodes_;
off_the_top_ = toCopy.off_the_top_;
invalid_ = toCopy.invalid_;
leaf_address_.clear();
root_->FindLeaves(leaf_address_);
return false;
}
return true;
}
bool PQTree::Reduce(set<int> reduction_set) {
if (reduction_set.size() < 2) {
reductions_.push_back(reduction_set);
return true;
}
if (invalid_)
return false;
if (!Bubble(reduction_set)) {
invalid_ = true;
return false;
}
if (!ReduceStep(reduction_set)) {
invalid_ = true;
return false;
}
// Reset all the temporary variables for the next round.
root_->Reset();
// Store the reduction set for later lookup.
reductions_.push_back(reduction_set);
return true;
}
bool PQTree::ReduceAll(list<set<int> > L) {
for (list<set<int> >::iterator S = L.begin(); S != L.end(); S++) {
if (!Reduce(*S))
return false;
}
return true;
}
list<int> PQTree::Frontier() {
list<int> out;
root_->FindFrontier(out);
return out;
}
list<int> PQTree::ReducedFrontier() {
list<int> out, inter;
root_->FindFrontier(inter);
set<int> allContained;
for (list<set<int> >::iterator j = reductions_.begin();
j != reductions_.end(); j++) {
allContained = SetMethods::SetUnion(allContained, *j);
}
for (list<int>::iterator j = inter.begin(); j != inter.end(); j++) {
if (SetMethods::SetFind(allContained, *j))
out.push_back(*j);
}
return out;
}
list<set<int> > PQTree::GetReductions() {
return reductions_;
}
set<int> PQTree::GetContained() {
set<int> out;
for (list<set<int> >::iterator i = reductions_.begin();
i!=reductions_.end(); i++) {
out = SetMethods::SetUnion(out,*i);
}
return out;
}
// Default destructor, Needs to delete the root.
PQTree::~PQTree() {
delete root_;
}