forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLongestPalindromeSubsequence.java
39 lines (31 loc) · 1.24 KB
/
LongestPalindromeSubsequence.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
* Implementation of finding the longest paldindrome subsequence Time complexity: O(n^2)
*
* @author William Fiset, [email protected]
*/
package com.williamfiset.algorithms.dp;
public class LongestPalindromeSubsequence {
public static void main(String[] args) {
System.out.println(lps("bbbab")); // Outputs 4 since "bbbb" is valid soln
System.out.println(lps("bccd")); // Outputs 2 since "cc" is valid soln
}
// Returns the length of the longest paldindrome subsequence
public static int lps(String s) {
if (s == null || s.length() == 0) return 0;
Integer[][] dp = new Integer[s.length()][s.length()];
return lps(s, dp, 0, s.length() - 1);
}
// Private recursive method with memoization to count
// the longest paldindrome subsequence.
private static int lps(String s, Integer[][] dp, int i, int j) {
// Base cases
if (j < i) return 0;
if (i == j) return 1;
if (dp[i][j] != null) return dp[i][j];
char c1 = s.charAt(i), c2 = s.charAt(j);
// Both end characters match
if (c1 == c2) return dp[i][j] = lps(s, dp, i + 1, j - 1) + 2;
// Consider both possible substrings and take the maximum
return dp[i][j] = Math.max(lps(s, dp, i + 1, j), lps(s, dp, i, j - 1));
}
}