Skip to content

Latest commit

 

History

History
123 lines (87 loc) · 3.11 KB

README.md

File metadata and controls

123 lines (87 loc) · 3.11 KB

LaTeX-document-codes

LaTex document codes for single cell sequencing analysis \documentclass{article} \usepackage{lipsum} \usepackage{graphicx}

\title{Single Cell Sequencing Analysis} \author{Divya Agrawal} \date{November 2022}

\begin{document}

\maketitle

\begin{Introduction}

\begin{verbatim}

Dataset is downloaded from Broad Insitute Single cell website- https://singlecell.broadinstitute.org/single_cell /study/SCP1256/visium-demo-study#study-summary Named as - Study: Visium demo study

Codes for single cell seq analysis install.packages("Seurat") install.packages("tidyverse") install.packages("dplyr") install.packages("patchwork") install.packages("ggplot2")

library(Seurat) library(tidyverse) library(dplyr) library(patchwork) library(ggplot2)

##load the datasets##

da.data <- Read10X(data.dir ="C:/Users/Divya Agrawal/Downloads/") da <- CreateSeuratObject(counts = da.data, min.cells = 4, min.features = 210)

##QC and filtering##

da[["percent.mt"]] <- PercentageFeatureSet(da, pattern = "^MT-") plot1<-FeatureScatter(da, feature1 = "nCount_RNA", feature2 = "nFeature_RNA") plot1 plot2 <-FeatureScatter(da, feature1 = "nCount_RNA", feature2 = "percent.mt") plot2 plot1 +plot2 da <- subset(da, subset = nFeature_RNA >215 & nFeature_RNA > 2500 & percent.mt <5)

##normalise the data##

da <- NormalizeData(da, normalization.method = "LogNormalize", scale.factor = 10000)

##Find variable Features##

da <-FindVariableFeatures(da, selection.method = "vst", mfeatures=2000) tp10<- head(VariableFeatures(da), 10) tp10 plot1<- VariableFeaturePlot(da)

##scale the data##

all.genes <-rownames(da) pre_scaling <-da da <- ScaleData(da, features = all.genes)

##run linear dimensionality reduction ##

da<-RunPCA(da, features = VariableFeatures(object = da)) print(da[["pca"]], dims = 1:5, nfeatures = 5) VizDimLoadings(da, dims = 1:2, reduction= "pca") DimHeatmap(da, dims = 1, cells = 500) DimHeatmap(da, dims = 1:15, cells = 500) da <- JackStraw(da, num.replicate = 100) JackStrawPlot(da, dims = 1:20) da <-ScoreJackStraw(da, dims = 1:20) da <-ScoreJackStraw(da, dims = 1:20) JackStrawPlot(da, dims = 1:20)

##cluster##

da <- FindNeighbors(da, dims = 1:10) da <-FindClusters(da, resolution = 0.5) head(Idents(da),5) ##run non linear dimensionality reduction on top of dimensionality reduction da <- RunUMAP(da, dims = 1:10) DimPlot(da, reduction = "umap")

##assign the biological meaning to these clusters

da.markers <-FindAllMarkers(da, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) da.markers %>% group_by(cluster) %>% slice_max(n=2, order_by =avg_log2FC) da.markers

FeaturePlot(da, features = c("CTSH","CCL5","ENG","CD79A"))

##talk to a biologist

new.cluster.ids <- c("Naive CD T", "CD14+ Mono", "Memory CD4 T", "B","CD 8 T", "FCG3A+ Mono","NK cells", "DC" ,"platelet", "MAC complex") names(new.cluster.ids) <- levels(da) da <- RenameIdents(da, new.cluster.ids) DimPlot(da, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()

\end{verbatim}

\begin{figure}[h] \centering \includegraphics[width = 1\textwidth]{figs/Rplot15.png} \caption{UMAP Plot} \label{fig:my_label} \end{figure}

\end{Introduction}

\end{document}