-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathnodeformer.py
380 lines (335 loc) · 16.5 KB
/
nodeformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import math,os
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch_sparse import SparseTensor, matmul
from torch_geometric.utils import degree
BIG_CONSTANT = 1e8
def create_projection_matrix(m, d, seed=0, scaling=0, struct_mode=False):
nb_full_blocks = int(m/d)
block_list = []
current_seed = seed
for _ in range(nb_full_blocks):
torch.manual_seed(current_seed)
if struct_mode:
q = create_products_of_givens_rotations(d, current_seed)
else:
unstructured_block = torch.randn((d, d))
q, _ = torch.qr(unstructured_block)
q = torch.t(q)
block_list.append(q)
current_seed += 1
remaining_rows = m - nb_full_blocks * d
if remaining_rows > 0:
torch.manual_seed(current_seed)
if struct_mode:
q = create_products_of_givens_rotations(d, current_seed)
else:
unstructured_block = torch.randn((d, d))
q, _ = torch.qr(unstructured_block)
q = torch.t(q)
block_list.append(q[0:remaining_rows])
final_matrix = torch.vstack(block_list)
current_seed += 1
torch.manual_seed(current_seed)
if scaling == 0:
multiplier = torch.norm(torch.randn((m, d)), dim=1)
elif scaling == 1:
multiplier = torch.sqrt(torch.tensor(float(d))) * torch.ones(m)
else:
raise ValueError("Scaling must be one of {0, 1}. Was %s" % scaling)
return torch.matmul(torch.diag(multiplier), final_matrix)
def create_products_of_givens_rotations(dim, seed):
nb_givens_rotations = dim * int(math.ceil(math.log(float(dim))))
q = np.eye(dim, dim)
np.random.seed(seed)
for _ in range(nb_givens_rotations):
random_angle = math.pi * np.random.uniform()
random_indices = np.random.choice(dim, 2)
index_i = min(random_indices[0], random_indices[1])
index_j = max(random_indices[0], random_indices[1])
slice_i = q[index_i]
slice_j = q[index_j]
new_slice_i = math.cos(random_angle) * slice_i + math.cos(random_angle) * slice_j
new_slice_j = -math.sin(random_angle) * slice_i + math.cos(random_angle) * slice_j
q[index_i] = new_slice_i
q[index_j] = new_slice_j
return torch.tensor(q, dtype=torch.float32)
def relu_kernel_transformation(data, is_query, projection_matrix=None, numerical_stabilizer=0.001):
del is_query
if projection_matrix is None:
return F.relu(data) + numerical_stabilizer
else:
ratio = 1.0 / torch.sqrt(
torch.tensor(projection_matrix.shape[0], torch.float32)
)
data_dash = ratio * torch.einsum("bnhd,md->bnhm", data, projection_matrix)
return F.relu(data_dash) + numerical_stabilizer
def softmax_kernel_transformation(data, is_query, projection_matrix=None, numerical_stabilizer=0.000001):
data_normalizer = 1.0 / torch.sqrt(torch.sqrt(torch.tensor(data.shape[-1], dtype=torch.float32)))
data = data_normalizer * data
ratio = 1.0 / torch.sqrt(torch.tensor(projection_matrix.shape[0], dtype=torch.float32))
data_dash = torch.einsum("bnhd,md->bnhm", data, projection_matrix)
diag_data = torch.square(data)
diag_data = torch.sum(diag_data, dim=len(data.shape)-1)
diag_data = diag_data / 2.0
diag_data = torch.unsqueeze(diag_data, dim=len(data.shape)-1)
last_dims_t = len(data_dash.shape) - 1
attention_dims_t = len(data_dash.shape) - 3
if is_query:
data_dash = ratio * (
torch.exp(data_dash - diag_data - torch.max(data_dash, dim=last_dims_t, keepdim=True)[0]) + numerical_stabilizer
)
else:
data_dash = ratio * (
torch.exp(data_dash - diag_data - torch.max(torch.max(data_dash, dim=last_dims_t, keepdim=True)[0],
dim=attention_dims_t, keepdim=True)[0]) + numerical_stabilizer
)
return data_dash
def numerator(qs, ks, vs):
kvs = torch.einsum("nbhm,nbhd->bhmd", ks, vs) # kvs refers to U_k in the paper
return torch.einsum("nbhm,bhmd->nbhd", qs, kvs)
def denominator(qs, ks):
all_ones = torch.ones([ks.shape[0]]).to(qs.device)
ks_sum = torch.einsum("nbhm,n->bhm", ks, all_ones) # ks_sum refers to O_k in the paper
return torch.einsum("nbhm,bhm->nbh", qs, ks_sum)
def numerator_gumbel(qs, ks, vs):
kvs = torch.einsum("nbhkm,nbhd->bhkmd", ks, vs) # kvs refers to U_k in the paper
return torch.einsum("nbhm,bhkmd->nbhkd", qs, kvs)
def denominator_gumbel(qs, ks):
all_ones = torch.ones([ks.shape[0]]).to(qs.device)
ks_sum = torch.einsum("nbhkm,n->bhkm", ks, all_ones) # ks_sum refers to O_k in the paper
return torch.einsum("nbhm,bhkm->nbhk", qs, ks_sum)
def kernelized_softmax(query, key, value, kernel_transformation, projection_matrix=None, edge_index=None, tau=0.25, return_weight=True):
'''
fast computation of all-pair attentive aggregation with linear complexity
input: query/key/value [B, N, H, D]
return: updated node emb, attention weight (for computing edge loss)
B = graph number (always equal to 1 in Node Classification), N = node number, H = head number,
M = random feature dimension, D = hidden size
'''
query = query / math.sqrt(tau)
key = key / math.sqrt(tau)
query_prime = kernel_transformation(query, True, projection_matrix) # [B, N, H, M]
key_prime = kernel_transformation(key, False, projection_matrix) # [B, N, H, M]
query_prime = query_prime.permute(1, 0, 2, 3) # [N, B, H, M]
key_prime = key_prime.permute(1, 0, 2, 3) # [N, B, H, M]
value = value.permute(1, 0, 2, 3) # [N, B, H, D]
# compute updated node emb, this step requires O(N)
z_num = numerator(query_prime, key_prime, value)
z_den = denominator(query_prime, key_prime)
z_num = z_num.permute(1, 0, 2, 3) # [B, N, H, D]
z_den = z_den.permute(1, 0, 2)
z_den = torch.unsqueeze(z_den, len(z_den.shape))
z_output = z_num / z_den # [B, N, H, D]
if return_weight: # query edge prob for computing edge-level reg loss, this step requires O(E)
start, end = edge_index
query_end, key_start = query_prime[end], key_prime[start] # [E, B, H, M]
edge_attn_num = torch.einsum("ebhm,ebhm->ebh", query_end, key_start) # [E, B, H]
edge_attn_num = edge_attn_num.permute(1, 0, 2) # [B, E, H]
attn_normalizer = denominator(query_prime, key_prime) # [N, B, H]
edge_attn_dem = attn_normalizer[end] # [E, B, H]
edge_attn_dem = edge_attn_dem.permute(1, 0, 2) # [B, E, H]
A_weight = edge_attn_num / edge_attn_dem # [B, E, H]
return z_output, A_weight
else:
return z_output
def kernelized_gumbel_softmax(query, key, value, kernel_transformation, projection_matrix=None, edge_index=None,
K=10, tau=0.25, return_weight=True):
'''
fast computation of all-pair attentive aggregation with linear complexity
input: query/key/value [B, N, H, D]
return: updated node emb, attention weight (for computing edge loss)
B = graph number (always equal to 1 in Node Classification), N = node number, H = head number,
M = random feature dimension, D = hidden size, K = number of Gumbel sampling
'''
query = query / math.sqrt(tau)
key = key / math.sqrt(tau)
query_prime = kernel_transformation(query, True, projection_matrix) # [B, N, H, M]
key_prime = kernel_transformation(key, False, projection_matrix) # [B, N, H, M]
query_prime = query_prime.permute(1, 0, 2, 3) # [N, B, H, M]
key_prime = key_prime.permute(1, 0, 2, 3) # [N, B, H, M]
value = value.permute(1, 0, 2, 3) # [N, B, H, D]
# compute updated node emb, this step requires O(N)
gumbels = (
-torch.empty(key_prime.shape[:-1]+(K, ), memory_format=torch.legacy_contiguous_format).exponential_().log()
).to(query.device) / tau # [N, B, H, K]
key_t_gumbel = key_prime.unsqueeze(3) * gumbels.exp().unsqueeze(4) # [N, B, H, K, M]
z_num = numerator_gumbel(query_prime, key_t_gumbel, value) # [N, B, H, K, D]
z_den = denominator_gumbel(query_prime, key_t_gumbel) # [N, B, H, K]
z_num = z_num.permute(1, 0, 2, 3, 4) # [B, N, H, K, D]
z_den = z_den.permute(1, 0, 2, 3) # [B, N, H, K]
z_den = torch.unsqueeze(z_den, len(z_den.shape))
z_output = torch.mean(z_num / z_den, dim=3) # [B, N, H, D]
if return_weight: # query edge prob for computing edge-level reg loss, this step requires O(E)
start, end = edge_index
query_end, key_start = query_prime[end], key_prime[start] # [E, B, H, M]
edge_attn_num = torch.einsum("ebhm,ebhm->ebh", query_end, key_start) # [E, B, H]
edge_attn_num = edge_attn_num.permute(1, 0, 2) # [B, E, H]
attn_normalizer = denominator(query_prime, key_prime) # [N, B, H]
edge_attn_dem = attn_normalizer[end] # [E, B, H]
edge_attn_dem = edge_attn_dem.permute(1, 0, 2) # [B, E, H]
A_weight = edge_attn_num / edge_attn_dem # [B, E, H]
return z_output, A_weight
else:
return z_output
def add_conv_relational_bias(x, edge_index, b, trans='sigmoid'):
'''
compute updated result by the relational bias of input adjacency
the implementation is similar to the Graph Convolution Network with a (shared) scalar weight for each edge
'''
row, col = edge_index
d_in = degree(col, x.shape[1]).float()
d_norm_in = (1. / d_in[col]).sqrt()
d_out = degree(row, x.shape[1]).float()
d_norm_out = (1. / d_out[row]).sqrt()
conv_output = []
for i in range(x.shape[2]):
if trans == 'sigmoid':
b_i = F.sigmoid(b[i])
elif trans == 'identity':
b_i = b[i]
else:
raise NotImplementedError
value = torch.ones_like(row) * b_i * d_norm_in * d_norm_out
adj_i = SparseTensor(row=col, col=row, value=value, sparse_sizes=(x.shape[1], x.shape[1]))
conv_output.append( matmul(adj_i, x[:, :, i]) ) # [B, N, D]
conv_output = torch.stack(conv_output, dim=2) # [B, N, H, D]
return conv_output
class NodeFormerConv(nn.Module):
'''
one layer of NodeFormer that attentive aggregates all nodes over a latent graph
return: node embeddings for next layer, edge loss at this layer
'''
def __init__(self, in_channels, out_channels, num_heads, kernel_transformation=softmax_kernel_transformation, projection_matrix_type='a',
nb_random_features=10, use_gumbel=True, nb_gumbel_sample=10, rb_order=0, rb_trans='sigmoid', use_edge_loss=True):
super(NodeFormerConv, self).__init__()
self.Wk = nn.Linear(in_channels, out_channels * num_heads)
self.Wq = nn.Linear(in_channels, out_channels * num_heads)
self.Wv = nn.Linear(in_channels, out_channels * num_heads)
self.Wo = nn.Linear(out_channels * num_heads, out_channels)
if rb_order >= 1:
self.b = torch.nn.Parameter(torch.FloatTensor(rb_order, num_heads), requires_grad=True)
self.out_channels = out_channels
self.num_heads = num_heads
self.kernel_transformation = kernel_transformation
self.projection_matrix_type = projection_matrix_type
self.nb_random_features = nb_random_features
self.use_gumbel = use_gumbel
self.nb_gumbel_sample = nb_gumbel_sample
self.rb_order = rb_order
self.rb_trans = rb_trans
self.use_edge_loss = use_edge_loss
def reset_parameters(self):
self.Wk.reset_parameters()
self.Wq.reset_parameters()
self.Wv.reset_parameters()
self.Wo.reset_parameters()
if self.rb_order >= 1:
if self.rb_trans == 'sigmoid':
torch.nn.init.constant_(self.b, 0.1)
elif self.rb_trans == 'identity':
torch.nn.init.constant_(self.b, 1.0)
def forward(self, z, adjs, tau):
B, N = z.size(0), z.size(1)
query = self.Wq(z).reshape(-1, N, self.num_heads, self.out_channels)
key = self.Wk(z).reshape(-1, N, self.num_heads, self.out_channels)
value = self.Wv(z).reshape(-1, N, self.num_heads, self.out_channels)
if self.projection_matrix_type is None:
projection_matrix = None
else:
dim = query.shape[-1]
seed = torch.ceil(torch.abs(torch.sum(query) * BIG_CONSTANT)).to(torch.int32)
projection_matrix = create_projection_matrix(
self.nb_random_features, dim, seed=seed).to(query.device)
# compute all-pair message passing update and attn weight on input edges, requires O(N) or O(N + E)
if self.use_gumbel and self.training: # only using Gumbel noise for training
z_next, weight = kernelized_gumbel_softmax(query,key,value,self.kernel_transformation,projection_matrix,adjs[0],
self.nb_gumbel_sample, tau, self.use_edge_loss)
else:
z_next, weight = kernelized_softmax(query, key, value, self.kernel_transformation, projection_matrix, adjs[0],
tau, self.use_edge_loss)
# compute update by relational bias of input adjacency, requires O(E)
for i in range(self.rb_order):
z_next += add_conv_relational_bias(value, adjs[i], self.b[i], self.rb_trans)
# aggregate results of multiple heads
z_next = self.Wo(z_next.flatten(-2, -1))
if self.use_edge_loss: # compute edge regularization loss on input adjacency
row, col = adjs[0]
d_in = degree(col, query.shape[1]).float()
d_norm = 1. / d_in[col]
d_norm_ = d_norm.reshape(1, -1, 1).repeat(1, 1, weight.shape[-1])
link_loss = torch.mean(weight.log() * d_norm_)
return z_next, link_loss
else:
return z_next
class NodeFormer(nn.Module):
'''
NodeFormer model implementation
return: predicted node labels, a list of edge losses at every layer
'''
def __init__(self, in_channels, hidden_channels, out_channels, num_layers=2, num_heads=4, dropout=0.0,
kernel_transformation=softmax_kernel_transformation, nb_random_features=30, use_bn=True, use_gumbel=True,
use_residual=True, use_act=False, use_jk=False, nb_gumbel_sample=10, rb_order=0, rb_trans='sigmoid', use_edge_loss=True):
super(NodeFormer, self).__init__()
self.convs = nn.ModuleList()
self.fcs = nn.ModuleList()
self.fcs.append(nn.Linear(in_channels, hidden_channels))
self.bns = nn.ModuleList()
self.bns.append(nn.LayerNorm(hidden_channels))
for i in range(num_layers):
self.convs.append(
NodeFormerConv(hidden_channels, hidden_channels, num_heads=num_heads, kernel_transformation=kernel_transformation,
nb_random_features=nb_random_features, use_gumbel=use_gumbel, nb_gumbel_sample=nb_gumbel_sample,
rb_order=rb_order, rb_trans=rb_trans, use_edge_loss=use_edge_loss))
self.bns.append(nn.LayerNorm(hidden_channels))
if use_jk:
self.fcs.append(nn.Linear(hidden_channels * num_layers + hidden_channels, out_channels))
else:
self.fcs.append(nn.Linear(hidden_channels, out_channels))
self.dropout = dropout
self.activation = F.elu
self.use_bn = use_bn
self.use_residual = use_residual
self.use_act = use_act
self.use_jk = use_jk
self.use_edge_loss = use_edge_loss
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
for fc in self.fcs:
fc.reset_parameters()
def forward(self, x, adjs, tau=1.0):
x = x.unsqueeze(0) # [B, N, H, D], B=1 denotes number of graph
layer_ = []
link_loss_ = []
z = self.fcs[0](x)
if self.use_bn:
z = self.bns[0](z)
z = self.activation(z)
z = F.dropout(z, p=self.dropout, training=self.training)
layer_.append(z)
for i, conv in enumerate(self.convs):
if self.use_edge_loss:
z, link_loss = conv(z, adjs, tau)
link_loss_.append(link_loss)
else:
z = conv(z, adjs, tau)
if self.use_residual:
z += layer_[i]
if self.use_bn:
z = self.bns[i+1](z)
if self.use_act:
z = self.activation(z)
z = F.dropout(z, p=self.dropout, training=self.training)
layer_.append(z)
if self.use_jk: # use jk connection for each layer
z = torch.cat(layer_, dim=-1)
x_out = self.fcs[-1](z).squeeze(0)
if self.use_edge_loss:
return x_out, link_loss_
else:
return x_out