s1,安装g++,cmake,protobuf,opencv
s2,对源码进行编译
git clone https://github.com/Tencent/ncnn
$ cd <ncnn-root-dir>
$ mkdir -p build
$ cd build
$ cmake ..
$ make -j4
s3,准备caffe模型文件(alexnet)
deploy.prototxt
snapshot_10000.caffemodel
alexnet deploy.prototxt, caffemodel
s4,使用ncnn转换工具将旧caffe版本的prototxt和caffemodel转新版本
将旧caffe版本的prototxt和caffemodel存放在caffe/build/tools目录下,执行如下命令完成转换
./upgrade_net_proto_text [old prototxt] [new prototxt]
./upgrade_net_proto_binary [old caffemodel] [new caffemodel]
s5,将deploy.prototxt中输入层替换成input层(如果只读取一张图片将dim设置为1)
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 227 dim: 227 } }
}
s6,使用caffe2ncnn工具将caffe model转成ncnn model
./caffe2ncnn deploy.prototxt bvlc_alexnet.caffemodel alexnet.param alexnet.bin
在ncnn/build/tools目录下生成param和bin文件。
s7,对模型参数进行加密
./ncnn2mem alexnet.param alexnet.bin alexnet.id.h alexnet.mem.h
在ncnn/build/tools目录下生成.param、.bin和.h文件。
alexnet.param 网络的模型参数
alexnet.bin 网络的权重
alexnet.id.h 在预测图片的时候使用到
s8,编写pc端代码(参考https://blog.csdn.net/qq_36982160/article/details/79929869)
#include <stdio.h>
#include <algorithm>
#include <vector>
#include"gesture.id.h"
#include "net.h"
//使用ncnn,传入的参数第一个是你需要预测的数据,第二个参数是各个类别的得分vector,注意传入的是地址,这样才能在这个函数中改变其值
static int detect_squeezenet( float *data, std::vector<float>& cls_scores) {
//实例化ncnn:Net,注意include "net.h",不要在意这时候因为找不到net.h文件而include<net.h>报错,后文会介绍正确的打开方式
ncnn::Net squeezenet;
//加载二进制文件,也是照写,后面会介绍对应文件应该放的正确位置
int a=squeezenet.load_param("demo.param");
int b=squeezenet.load_param_bin("demo.bin");
//实例化Mat,前三个参数是维度,第四个参数是传入的data,维度的设置根据你自己的数据进行设置,顺序是w、h、c
ncnn::Mat in = ncnn::Mat(550, 8, 2, data);
//实例化Extractor
ncnn::Extractor ex = squeezenet.create_extractor();
ex.set_light_mode(true);
//注意把"data"换成你deploy中的数据层名字
int d= ex.input("data", in);
ncnn::Mat out;
//这里是真正的终点,不多说了,只能仰天膜拜nihui大牛,重点是将prob换成你deploy中最后一层的名字
int c=ex.extract("prob", out);
//将out中的值转化为我们的cls_scores,这样就可以返回不同类别的得分了
cls_scores.resize(out.w);
for (int j=0; j<out.w; j++) {
cls_scores[j] = out[j];
}
return 0;
}
int main(int argc, char** argv) {
//注意,这里的argv是之后从终端输入的参数,我这里是数据源的路径,因为我是从两个文件中生成一个总的数据,所以用了argv[1]和argv[2],你也可以自己根据需求改变
const char* imagepath1 = argv[1];
const char* imagepath2=argv[2];
FILE *fopeni=NULL;
FILE *fopenq=NULL;
fopeni=fopen(imagepath1,"r");
fopenq=fopen(imagepath2,"r");
//这是我的数据,i和q相当于图片的两个通道
float i[4400];
float q[4400];
float data[8800];
int count=4400;
for (int j = 0; j < count; ++j) {
fscanf(fopeni,"%f",&i[j]);
fscanf(fopenq,"%f",&q[j]);
}
//这是将iq(相当于图片的两个通道的数据)转化为一个一维向量,需要特别注意的是数据维度的顺序
for (int j = 0; j < 8800; ++j) {
if (j<4400) {
data[j]=i[j];
}
else{
data[j]=q[j-4400];
}
}
char a[13]={'A','B','C','F','G','H','I','J','K','L','M','N','O'};
//注意,这里是调用ncnn的代码
std::vector<float> cls_scores; //用来存储最终各类别的得分
//这个函数的实现在上面,快去看
detect_squeezenet(data, cls_scores);
for (int i = 0; i < cls_scores.size(); ++i) {
printf("%c : %f\n", a[i],cls_scores[i]);
}
return 0;
}
代码是最简单的ncnn使用场景,可以根据自己需求加入代码。
s9,编译代码
(1) 编写CMakeLists.txt
在CMakeLists.txt增加如下两行代码
add_executable(demo demo.cpp)
target_link_libraries(demo ncnn)
CMakeLists.txt如下
find_package(OpenCV QUIET COMPONENTS core highgui imgproc imgcodecs)
if(NOT OpenCV_FOUND)
find_package(OpenCV REQUIRED COMPONENTS core highgui imgproc)
endif()
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/../src)
include_directories(${CMAKE_CURRENT_BINARY_DIR}/../src)
add_executable(squeezenet squeezenet.cpp)
target_link_libraries(squeezenet ncnn ${OpenCV_LIBS})
add_executable(fasterrcnn fasterrcnn.cpp)
target_link_libraries(fasterrcnn ncnn ${OpenCV_LIBS})
add_executable(demo demo.cpp)
target_link_libraries(demo ncnn)
add_subdirectory(ssd)
(2) 在ncnn根目录下CMakeLists.txt中编译examples语句的注释去掉
##############################################
# add_subdirectory(examples)
# add_subdirectory(benchmark)
add_subdirectory(src)
if(NOT ANDROID AND NOT IOS)
add_subdirectory(tools)
endif()
(3)ncnn/build目录下进行编译,生成demo可执行文件
make
s10,执行
将生成的.param和.bin文件复制到ncnn/build/examples目录下,然后终端cd到ncnn/build/examples,执行:
./demo data_path1 data_path2
s1,安装Visual Studio Community 2017
download Visual Studio Community 2017 from https://visualstudio.microsoft.com/vs/community/
install it
Start → Programs → Visual Studio 2017 → Visual Studio Tools → x64 Native Tools Command Prompt for VS 2017
s2,编译protobuf
download protobuf-3.4.0 from https://github.com/google/protobuf/archive/v3.4.0.zip
> cd <protobuf-root-dir>
> mkdir build-vs2017
> cd build-vs2017
> cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_MSVC_STATIC_RUNTIME=OFF ../cmake
> nmake
> nmake install
s3,编译ncnn库
> cd <ncnn-root-dir>
> mkdir -p build-vs2017
> cd build-vs2017
> cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -DProtobuf_INCLUDE_DIR=<protobuf-root-dir>/build-vs2017/install/include -DProtobuf_LIBRARIES=<protobuf-root-dir>/build-vs2017/install/lib/libprotobuf.lib -DProtobuf_PROTOC_EXECUTABLE=<protobuf-root-dir>/build-vs2017/install/bin/protoc.exe ..
> nmake
> nmake install
pick build-vs2017/install folder for further usage
参考:
https://blog.csdn.net/qq_33200967/article/details/82421089
https://blog.csdn.net/qq_36982160/article/details/79931741
s1,使用Android Studio安装ndk
1)打开Android Studio,依次点击File->Settings->Appearance&Behavior->System Settings->Android SDK->SDK Tool,选中NDK,点击apply自动下载安装(如果安装成功会在SDK目录下生成ndk-bundle文件夹);
2)配置ndk的环境变量
-
打开profile
sudo vim /etc/profile
-
在profile文件末尾添加ndk路径
export NDK_HOME=sdkroot/ndk-bundle PATH=$NDK_HOME:$PATH
-
保存退出,使用source命令使环境变量生效
source /etc/profile
-
验证ndk是否配置成功
ndk-build -v
s2,编译ncnn sdk
通过如下命令编译ncnn sdk,会在ncnn/build-android下生成install文件夹,其中包括:include(调用ncnn所需的头文件)和lib(编译得到的ncnn库libncnn.a)
mkdir build-android
cd build-android
cmake -DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DANDROID_ABI="armeabi-v7a" -DANDROID_ARM_NEON=ON \
-DANDROID_PLATFORM=android-14 ..
make
make install
make package
参数设置请参考:https://github.com/Tencent/ncnn/wiki/cmake-%E6%89%93%E5%8C%85-android-sdk
ANDROID_ABI 是架构名字,"armeabi-v7a" 支持绝大部分手机硬件
ANDROID_ARM_NEON 是否使用 NEON 指令集,设为 ON 支持绝大部分手机硬件
ANDROID_PLATFORM 指定最低系统版本,"android-14" 就是 android-4.0
s3,对源码进行编译
git clone https://github.com/Tencent/ncnn
$ cd <ncnn-root-dir>
$ mkdir -p build
$ cd build
$ cmake ..
$ make -j4
s4,准备caffe模型文件(alexnet)
deploy.prototxt
snapshot_10000.caffemodel
alexnet deploy.prototxt, caffemodel
s5,使用ncnn转换工具将旧caffe版本的prototxt和caffemodel转新版本
将旧caffe版本的prototxt和caffemodel存放在caffe/build/tools目录下,执行如下命令完成转换
./upgrade_net_proto_text [old prototxt] [new prototxt]
./upgrade_net_proto_binary [old caffemodel] [new caffemodel]
s6,将deploy.prototxt中输入层替换成input层(如果只读取一张图片将dim设置为1)
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 227 dim: 227 } }
}
s7,使用caffe2ncnn工具将caffe model转成ncnn model
./caffe2ncnn deploy.prototxt bvlc_alexnet.caffemodel alexnet.param alexnet.bin
在ncnn/build/tools目录下生成param和bin文件。
s8,对模型参数进行加密
./ncnn2mem alexnet.param alexnet.bin alexnet.id.h alexnet.mem.h
在ncnn/build/tools目录下生成.param、.bin和.h文件。
alexnet.param 网络的模型参数
alexnet.bin 网络的权重
alexnet.id.h 在预测图片的时候使用到
s9,开发安卓项目
(1)在Android Studio上创建一个NCNN1,并选择Include C++ support
(2)在main目录下创建assets目录,并将alexnet.param、alexnet.bin、label.txt拷贝其中
(3)将include文件夹和 alexnet.id.h拷贝到cpp目录下
(4)在main目录下创建jniLibs/armeabi-v7a/目录,并将alexnet.id.h 拷贝其中
(5)在cpp文件夹下创建C++文件,用于加载模型和预测图片
#include <android/bitmap.h>
#include <android/log.h>
#include <jni.h>
#include <string>
#include <vector>
// ncnn
#include "include/net.h"
#include "alexnet.id.h"
#include <sys/time.h>
#include <unistd.h>
static ncnn::UnlockedPoolAllocator g_blob_pool_allocator;
static ncnn::PoolAllocator g_workspace_pool_allocator;
static ncnn::Mat ncnn_param;
static ncnn::Mat ncnn_bin;
static ncnn::Net ncnn_net;
extern "C" {
// public native boolean Init(byte[] param, byte[] bin, byte[] words); JNIEXPORT jboolean JNICALL
Java_com_example_ncnn1_NcnnJni_Init(JNIEnv *env, jobject thiz, jbyteArray param, jbyteArray bin) {
// init param
{
int len = env->GetArrayLength(param);
ncnn_param.create(len, (size_t) 1u);
env->GetByteArrayRegion(param, 0, len, (jbyte *) ncnn_param); int ret = ncnn_net.load_param((const unsigned char *) ncnn_param);
__android_log_print(ANDROID_LOG_DEBUG, "NcnnJni", "load_param %d %d", ret, len);
}
// init bin
{
int len = env->GetArrayLength(bin);
ncnn_bin.create(len, (size_t) 1u);
env->GetByteArrayRegion(bin, 0, len, (jbyte *) ncnn_bin);
int ret = ncnn_net.load_model((const unsigned char *) ncnn_bin);
__android_log_print(ANDROID_LOG_DEBUG, "NcnnJni", "load_model %d %d", ret, len);
}
ncnn::Option opt;
opt.lightmode = true;
opt.num_threads = 4;
opt.blob_allocator = &g_blob_pool_allocator;
opt.workspace_allocator = &g_workspace_pool_allocator;
ncnn::set_default_option(opt);
return JNI_TRUE;
}
// public native String Detect(Bitmap bitmap);
JNIEXPORT jfloatArray JNICALL Java_com_example_ncnn1_NcnnJni_Detect(JNIEnv* env, jobject thiz, jobject bitmap)
{
// ncnn from bitmap
ncnn::Mat in;
{
AndroidBitmapInfo info;
AndroidBitmap_getInfo(env, bitmap, &info);
int width = info.width; int height = info.height;
if (info.format != ANDROID_BITMAP_FORMAT_RGBA_8888)
return NULL;
void* indata;
AndroidBitmap_lockPixels(env, bitmap, &indata);
// 把像素转换成data,并指定通道顺序
in = ncnn::Mat::from_pixels((const unsigned char*)indata, ncnn::Mat::PIXEL_RGBA2BGR, width, height);
AndroidBitmap_unlockPixels(env, bitmap);
}
// ncnn_net
std::vector<float> cls_scores;
{
// 减去均值和乘上比例
const float mean_vals[3] = {103.94f, 116.78f, 123.68f};
const float scale[3] = {0.017f, 0.017f, 0.017f};
in.substract_mean_normalize(mean_vals, scale);
ncnn::Extractor ex = ncnn_net.create_extractor();
// 如果时不加密是使用ex.input("data", in);
ex.input(mobilenet_v2_param_id::BLOB_data, in);
ncnn::Mat out;
// 如果时不加密是使用ex.extract("prob", out);
ex.extract(mobilenet_v2_param_id::BLOB_prob, out);
int output_size = out.w;
jfloat *output[output_size];
for (int j = 0; j < out.w; j++) {
output[j] = &out[j];
}
jfloatArray jOutputData = env->NewFloatArray(output_size);
if (jOutputData == nullptr) return nullptr;
env->SetFloatArrayRegion(jOutputData, 0, output_size, reinterpret_cast<const jfloat *>(*output)); // copy
return jOutputData;
}
}
}
(6)在项目包com.example.ncnn1下,修改MainActivity.java中的代码
package com.example.ncnn1;
import android.Manifest;
import android.app.Activity;
import android.content.Intent;
import android.content.pm.PackageManager;
import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.net.Uri;
import android.os.Bundle;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.v4.app.ActivityCompat;
import android.support.v4.content.ContextCompat;
import android.text.method.ScrollingMovementMethod;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;
import com.bumptech.glide.Glide;
import com.bumptech.glide.load.engine.DiskCacheStrategy;
import com.bumptech.glide.request.RequestOptions;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class MainActivity extends Activity {
private static final String TAG = MainActivity.class.getName();
private static final int USE_PHOTO = 1001;
private String camera_image_path;
private ImageView show_image;
private TextView result_text;
private boolean load_result = false; private int[] ddims = {1, 3, 224, 224};
private int model_index = 1;
private List<String> resultLabel = new ArrayList<>();
private NcnnJni squeezencnn = new NcnnJni();
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
try {
initSqueezeNcnn();
} catch (IOException e) {
Log.e("MainActivity", "initSqueezeNcnn error");
}
init_view();
readCacheLabelFromLocalFile();
}
private void initSqueezeNcnn() throws IOException {
byte[] param = null;
byte[] bin = null;
{
InputStream assetsInputStream = getAssets().open("mobilenet_v2.param.bin");
int available = assetsInputStream.available();
param = new byte[available];
int byteCode = assetsInputStream.read(param);
assetsInputStream.close();
}
{
InputStream assetsInputStream = getAssets().open("mobilenet_v2.bin");
int available = assetsInputStream.available();
bin = new byte[available];
int byteCode = assetsInputStream.read(bin);
assetsInputStream.close();
}
load_result = squeezencnn.Init(param, bin);
Log.d("load model", "result:" + load_result);
}
// initialize view
private void init_view() {
request_permissions();
show_image = (ImageView) findViewById(R.id.show_image);
result_text = (TextView) findViewById(R.id.result_text);
result_text.setMovementMethod(ScrollingMovementMethod.getInstance());
Button use_photo = (Button) findViewById(R.id.use_photo);
// use photo click
use_photo.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
if (!load_result) {
Toast.makeText(MainActivity.this, "never load model", Toast.LENGTH_SHORT).show();
return;
}
PhotoUtil.use_photo(MainActivity.this, USE_PHOTO);
}
});
}
// load label's name
private void readCacheLabelFromLocalFile() {
try {
AssetManager assetManager = getApplicationContext().getAssets();
BufferedReader reader = new BufferedReader(new InputStreamReader(assetManager.open("synset.txt")));
String readLine = null;
while ((readLine = reader.readLine()) != null) {
resultLabel.add(readLine);
}
reader.close();
} catch (Exception e) {
Log.e("labelCache", "error " + e);
}
}
@Override
protected void onActivityResult(int requestCode, int resultCode, @Nullable Intent data) {
String image_path;
RequestOptions options = new RequestOptions().skipMemoryCache(true).diskCacheStrategy(DiskCacheStrategy.NONE);
if (resultCode == Activity.RESULT_OK) {
switch (requestCode) {
case USE_PHOTO:
if (data == null) {
Log.w(TAG, "user photo data is null");
return;
}
Uri image_uri = data.getData();
Glide.with(MainActivity.this).load(image_uri).apply(options).into(show_image);
// get image path from uri
image_path = PhotoUtil.get_path_from_URI(MainActivity.this, image_uri);
// predict image
predict_image(image_path);
break;
}
}
}
// predict image
private void predict_image(String image_path) {
// picture to float array
Bitmap bmp = PhotoUtil.getScaleBitmap(image_path);
Bitmap rgba = bmp.copy(Bitmap.Config.ARGB_8888, true);
// resize to 227x227
Bitmap input_bmp = Bitmap.createScaledBitmap(rgba, ddims[2], ddims[3], false);
try {
// Data format conversion takes too long
// Log.d("inputData", Arrays.toString(inputData));
long start = System.currentTimeMillis();
// get predict result
float[] result = squeezencnn.Detect(input_bmp);
long end = System.currentTimeMillis();
Log.d(TAG, "origin predict result:" + Arrays.toString(result));
long time = end - start; Log.d("result length", String.valueOf(result.length));
// show predict result and time
int r = get_max_result(result);
String show_text = "result:" + r + "\nname:" + resultLabel.get(r) + "\nprobability:" + result[r] + "\ntime:" + time + "ms";
result_text.setText(show_text);
} catch (Exception e) {
e.printStackTrace();
}
}
// get max probability label
private int get_max_result(float[] result) {
float probability = result[0];
int r = 0;
for (int i = 0; i < result.length; i++) {
if (probability < result[i]) {
probability = result[i];
r = i;
}
}
return r;
}
// request permissions
private void request_permissions() {
List<String> permissionList = new ArrayList<>();
if (ContextCompat.checkSelfPermission(this, Manifest.permission.CAMERA) != PackageManager.PERMISSION_GRANTED) {
permissionList.add(Manifest.permission.CAMERA);
}
if (ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_EXTERNAL_STORAGE) != PackageManager.PERMISSION_GRANTED) {
permissionList.add(Manifest.permission.WRITE_EXTERNAL_STORAGE);
}
if (ContextCompat.checkSelfPermission(this, Manifest.permission.READ_EXTERNAL_STORAGE) != PackageManager.PERMISSION_GRANTED) {
permissionList.add(Manifest.permission.READ_EXTERNAL_STORAGE);
}
// if list is not empty will request permissions
if (!permissionList.isEmpty()) {
ActivityCompat.requestPermissions(this, permissionList.toArray(new String[permissionList.size()]), 1);
}
}
@Override
public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) {
super.onRequestPermissionsResult(requestCode, permissions, grantResults);
switch (requestCode) {
case 1:
if (grantResults.length > 0) {
for (int i = 0; i < grantResults.length; i++) {
int grantResult = grantResults[i];
if (grantResult == PackageManager.PERMISSION_DENIED) {
String s = permissions[i];
Toast.makeText(this, s + " permission was denied", Toast.LENGTH_SHORT).show();
}
}
}
break;
}
}
}
(7)在项目的包com.example.ncnn1下,创建一个NcnnJni.java类,用于提供JNI接口,代码如下:
package com.example.ncnn1;
import android.graphics.Bitmap;
public class NcnnJni {
public native boolean Init(byte[] param, byte[] bin);
public native float[] Detect(Bitmap bitmap);
static {
System.loadLibrary("ncnn_jni");
}
}
(8)在项目的包com.example.ncnn1下,创建一个PhotoUtil.java类,这个是图片的工具类,代码如下:
package com.example.ncnn1;
import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.net.Uri;
import android.provider.MediaStore;
import java.nio.FloatBuffer;
public class PhotoUtil {
// get picture in photo
public static void use_photo(Activity activity, int requestCode) {
Intent intent = new Intent(Intent.ACTION_PICK);
intent.setType("image/*");
activity.startActivityForResult(intent, requestCode);
}
// get photo from Uri
public static String get_path_from_URI(Context context, Uri uri) {
String result;
Cursor cursor = context.getContentResolver().query(uri, null, null, null, null);
if (cursor == null) {
result = uri.getPath();
} else {
cursor.moveToFirst();
int idx = cursor.getColumnIndex(MediaStore.Images.ImageColumns.DATA);
result = cursor.getString(idx);
cursor.close();
}
return result;
}
// compress picture
public static Bitmap getScaleBitmap(String filePath) {
BitmapFactory.Options opt = new BitmapFactory.Options();
opt.inJustDecodeBounds = true;
BitmapFactory.decodeFile(filePath, opt);
int bmpWidth = opt.outWidth;
int bmpHeight = opt.outHeight;
int maxSize = 500;
// compress picture with inSampleSize
opt.inSampleSize = 1;
while (true) {
if (bmpWidth / opt.inSampleSize < maxSize || bmpHeight / opt.inSampleSize < maxSize) {
break;
}
opt.inSampleSize *= 2;
}
opt.inJustDecodeBounds = false;
return BitmapFactory.decodeFile(filePath, opt);
}
}
(9)修改启动页面的布局,修改如下:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
<LinearLayout
android:id="@+id/btn_ll"
android:layout_alignParentBottom="true"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">
<Button
android:id="@+id/use_photo"
android:layout_weight="1"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:text="相册" />
</LinearLayout>
<TextView
android:layout_above="@id/btn_ll"
android:id="@+id/result_text"
android:textSize="16sp"
android:layout_width="match_parent"
android:hint="预测结果会在这里显示"
android:layout_height="100dp" />
<ImageView
android:layout_alignParentTop="true"
android:layout_above="@id/result_text"
android:id="@+id/show_image"
android:layout_width="match_parent"
android:layout_height="match_parent" />
</RelativeLayout>
(10)修改APP目录下的CMakeLists.txt文件,修改如下:
# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html
# Sets the minimum version of CMake required to build the native library.
cmake_minimum_required(VERSION 3.4.1)
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds them for you.
# Gradle automatically packages shared libraries with your APK.
set(ncnn_lib ${CMAKE_SOURCE_DIR}/src/main/jniLibs/armeabi-v7a/libncnn.a)
add_library (ncnn_lib STATIC IMPORTED)
set_target_properties(ncnn_lib PROPERTIES IMPORTED_LOCATION ${ncnn_lib})
add_library( # Sets the name of the library.
ncnn_jni
# Sets the library as a shared library.
SHARED
# Provides a relative path to your source file(s).
src/main/cpp/ncnn_jni.cpp )
# Searches for a specified prebuilt library and stores the path as a
# variable. Because CMake includes system libraries in the search path by
# default, you only need to specify the name of the public NDK library
# you want to add. CMake verifies that the library exists before
# completing its build.
find_library( # Sets the name of the path variable.
log-lib
# Specifies the name of the NDK library that
# you want CMake to locate.
log )
# Specifies libraries CMake should link to your target library. You
# can link multiple libraries, such as libraries you define in this
# build script, prebuilt third-party libraries, or system libraries.
target_link_libraries( # Specifies the target library.
ncnn_jni
ncnn_lib
jnigraphics
# Links the target library to the log library
# included in the NDK.
${log-lib} )
(11)修改APP目录下的build.gradle文件,修改如下:
apply plugin: 'com.android.application'
android {
compileSdkVersion 28
defaultConfig {
applicationId "com.example.ncnn1"
minSdkVersion 21
targetSdkVersion 28
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
externalNativeBuild {
cmake {
cppFlags "-std=c++11 -fopenmp"
abiFilters "armeabi-v7a"
}
}
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
}
}
externalNativeBuild {
cmake {
path "CMakeLists.txt"
}
}
sourceSets {
main {
jniLibs.srcDirs = ["src/main/jniLibs"]
jni.srcDirs = ['src/cpp']
}
}
}
dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'com.android.support:appcompat-v7:28.0.0-rc02'
implementation 'com.android.support.constraint:constraint-layout:1.1.3'
testImplementation 'junit:junit:4.12'
implementation 'com.github.bumptech.glide:glide:4.3.1'
androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
}
(12)最后在配置文件中添加权限
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
(13)编译完成