Skip to content

Latest commit

 

History

History
986 lines (759 loc) · 27.6 KB

File metadata and controls

986 lines (759 loc) · 27.6 KB

17.8.1 NCNN部署

1.在电脑端使用ncnn实现分类(alexnet)

s1,安装g++,cmake,protobuf,opencv

s2,对源码进行编译

git clone https://github.com/Tencent/ncnn
$ cd <ncnn-root-dir>
$ mkdir -p build
$ cd build
$ cmake ..
$ make -j4

s3,准备caffe模型文件(alexnet)

deploy.prototxt  
snapshot_10000.caffemodel  

alexnet deploy.prototxtcaffemodel

s4,使用ncnn转换工具将旧caffe版本的prototxt和caffemodel转新版本

将旧caffe版本的prototxt和caffemodel存放在caffe/build/tools目录下,执行如下命令完成转换

./upgrade_net_proto_text [old prototxt] [new prototxt]
./upgrade_net_proto_binary [old caffemodel] [new caffemodel]

s5,将deploy.prototxt中输入层替换成input层(如果只读取一张图片将dim设置为1)

layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 1 dim: 3 dim: 227 dim: 227 } }
}

s6,使用caffe2ncnn工具将caffe model转成ncnn model

./caffe2ncnn deploy.prototxt bvlc_alexnet.caffemodel alexnet.param alexnet.bin

在ncnn/build/tools目录下生成param和bin文件。

s7,对模型参数进行加密

./ncnn2mem alexnet.param alexnet.bin alexnet.id.h alexnet.mem.h

在ncnn/build/tools目录下生成.param、.bin和.h文件。

alexnet.param 网络的模型参数

alexnet.bin 网络的权重

alexnet.id.h 在预测图片的时候使用到

s8,编写pc端代码(参考https://blog.csdn.net/qq_36982160/article/details/79929869)

#include <stdio.h> 
#include <algorithm> 
#include <vector> 
#include"gesture.id.h" 
#include "net.h" 
//使用ncnn,传入的参数第一个是你需要预测的数据,第二个参数是各个类别的得分vector,注意传入的是地址,这样才能在这个函数中改变其值 
static int detect_squeezenet( float *data, std::vector<float>& cls_scores) { 
	//实例化ncnn:Net,注意include "net.h",不要在意这时候因为找不到net.h文件而include<net.h>报错,后文会介绍正确的打开方式 
	ncnn::Net squeezenet; 
	
	//加载二进制文件,也是照写,后面会介绍对应文件应该放的正确位置 
	int a=squeezenet.load_param("demo.param"); 
	int b=squeezenet.load_param_bin("demo.bin"); 

	//实例化Mat,前三个参数是维度,第四个参数是传入的data,维度的设置根据你自己的数据进行设置,顺序是w、h、c 
	ncnn::Mat in = ncnn::Mat(550, 8, 2, data); 
	
	//实例化Extractor 
	ncnn::Extractor ex = squeezenet.create_extractor(); 
	ex.set_light_mode(true); 
	//注意把"data"换成你deploy中的数据层名字 
	int d= ex.input("data", in); 
	
	ncnn::Mat out; 
	//这里是真正的终点,不多说了,只能仰天膜拜nihui大牛,重点是将prob换成你deploy中最后一层的名字 
	int c=ex.extract("prob", out); 
	
	//将out中的值转化为我们的cls_scores,这样就可以返回不同类别的得分了 
	cls_scores.resize(out.w); 
	for (int j=0; j<out.w; j++) { 
		cls_scores[j] = out[j]; 
		} 
		return 0; 
	} 

int main(int argc, char** argv) { 
	//注意,这里的argv是之后从终端输入的参数,我这里是数据源的路径,因为我是从两个文件中生成一个总的数据,所以用了argv[1]和argv[2],你也可以自己根据需求改变 
	const char* imagepath1 = argv[1]; 
	const char* imagepath2=argv[2]; 
	
	FILE *fopeni=NULL; 
	FILE *fopenq=NULL; 
	
	fopeni=fopen(imagepath1,"r"); 
	fopenq=fopen(imagepath2,"r"); 
	
	//这是我的数据,i和q相当于图片的两个通道 
	float i[4400]; 
	float q[4400]; 
	float data[8800]; 
	
	int count=4400; 
	for (int j = 0; j < count; ++j) { 
		fscanf(fopeni,"%f",&i[j]); 
		fscanf(fopenq,"%f",&q[j]); 
	} 
	
	//这是将iq(相当于图片的两个通道的数据)转化为一个一维向量,需要特别注意的是数据维度的顺序 
	for (int j = 0; j < 8800; ++j) { 
		if (j<4400) { 
			data[j]=i[j]; 
		}
		else{ 
			data[j]=q[j-4400]; 
		} 
	} 
	
	char a[13]={'A','B','C','F','G','H','I','J','K','L','M','N','O'}; 
	
	//注意,这里是调用ncnn的代码 
	std::vector<float> cls_scores;  //用来存储最终各类别的得分 
	//这个函数的实现在上面,快去看 
	detect_squeezenet(data, cls_scores); 
	for (int i = 0; i < cls_scores.size(); ++i) { 
		printf("%c : %f\n", a[i],cls_scores[i]); 
	} 
	
	return 0; 
}

代码是最简单的ncnn使用场景,可以根据自己需求加入代码。

s9,编译代码

(1) 编写CMakeLists.txt

在CMakeLists.txt增加如下两行代码

add_executable(demo demo.cpp)
target_link_libraries(demo ncnn)

CMakeLists.txt如下

find_package(OpenCV QUIET COMPONENTS core highgui imgproc imgcodecs) 
if(NOT OpenCV_FOUND) 
	find_package(OpenCV REQUIRED COMPONENTS core highgui imgproc) 
endif() 

include_directories(${CMAKE_CURRENT_SOURCE_DIR}/../src) 
include_directories(${CMAKE_CURRENT_BINARY_DIR}/../src) 

add_executable(squeezenet squeezenet.cpp) 

target_link_libraries(squeezenet ncnn ${OpenCV_LIBS}) 

add_executable(fasterrcnn fasterrcnn.cpp) 
target_link_libraries(fasterrcnn ncnn ${OpenCV_LIBS}) 

add_executable(demo demo.cpp) 
target_link_libraries(demo ncnn) 

add_subdirectory(ssd)

(2) 在ncnn根目录下CMakeLists.txt中编译examples语句的注释去掉

##############################################

# add_subdirectory(examples)
# add_subdirectory(benchmark)
add_subdirectory(src)
if(NOT ANDROID AND NOT IOS)
add_subdirectory(tools)
endif()

(3)ncnn/build目录下进行编译,生成demo可执行文件

make

s10,执行

将生成的.param和.bin文件复制到ncnn/build/examples目录下,然后终端cd到ncnn/build/examples,执行:

./demo data_path1 data_path2
2. Win x64 (Visual Studio Community 2017)

s1,安装Visual Studio Community 2017

download Visual Studio Community 2017 from https://visualstudio.microsoft.com/vs/community/
install it
Start → Programs → Visual Studio 2017 → Visual Studio Tools → x64 Native Tools Command Prompt for VS 2017

s2,编译protobuf

download protobuf-3.4.0 from https://github.com/google/protobuf/archive/v3.4.0.zip
> cd <protobuf-root-dir>
> mkdir build-vs2017
> cd build-vs2017
> cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_MSVC_STATIC_RUNTIME=OFF ../cmake
> nmake
> nmake install

s3,编译ncnn库

> cd <ncnn-root-dir>
> mkdir -p build-vs2017
> cd build-vs2017
> cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -DProtobuf_INCLUDE_DIR=<protobuf-root-dir>/build-vs2017/install/include -DProtobuf_LIBRARIES=<protobuf-root-dir>/build-vs2017/install/lib/libprotobuf.lib -DProtobuf_PROTOC_EXECUTABLE=<protobuf-root-dir>/build-vs2017/install/bin/protoc.exe ..
> nmake
> nmake install

pick build-vs2017/install folder for further usage
3. Android端使用ncnn

参考:

https://blog.csdn.net/qq_33200967/article/details/82421089

https://blog.csdn.net/qq_36982160/article/details/79931741

s1,使用Android Studio安装ndk

1)打开Android Studio,依次点击File->Settings->Appearance&Behavior->System Settings->Android SDK->SDK Tool,选中NDK,点击apply自动下载安装(如果安装成功会在SDK目录下生成ndk-bundle文件夹);

2)配置ndk的环境变量

  • 打开profile

    sudo vim /etc/profile
  • 在profile文件末尾添加ndk路径

    export NDK_HOME=sdkroot/ndk-bundle
    PATH=$NDK_HOME:$PATH
  • 保存退出,使用source命令使环境变量生效

    source /etc/profile
  • 验证ndk是否配置成功

    ndk-build -v

s2,编译ncnn sdk

通过如下命令编译ncnn sdk,会在ncnn/build-android下生成install文件夹,其中包括:include(调用ncnn所需的头文件)和lib(编译得到的ncnn库libncnn.a)

mkdir build-android
cd build-android
cmake -DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
    -DANDROID_ABI="armeabi-v7a" -DANDROID_ARM_NEON=ON \
    -DANDROID_PLATFORM=android-14 ..
make
make install
make package

参数设置请参考:https://github.com/Tencent/ncnn/wiki/cmake-%E6%89%93%E5%8C%85-android-sdk

ANDROID_ABI 是架构名字,"armeabi-v7a" 支持绝大部分手机硬件
ANDROID_ARM_NEON 是否使用 NEON 指令集,设为 ON 支持绝大部分手机硬件
ANDROID_PLATFORM 指定最低系统版本,"android-14" 就是 android-4.0

s3,对源码进行编译

git clone https://github.com/Tencent/ncnn
$ cd <ncnn-root-dir>
$ mkdir -p build
$ cd build
$ cmake ..
$ make -j4

s4,准备caffe模型文件(alexnet)

deploy.prototxt  
snapshot_10000.caffemodel  

alexnet deploy.prototxtcaffemodel

s5,使用ncnn转换工具将旧caffe版本的prototxt和caffemodel转新版本

将旧caffe版本的prototxt和caffemodel存放在caffe/build/tools目录下,执行如下命令完成转换

./upgrade_net_proto_text [old prototxt] [new prototxt]
./upgrade_net_proto_binary [old caffemodel] [new caffemodel]

s6,将deploy.prototxt中输入层替换成input层(如果只读取一张图片将dim设置为1)

layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 1 dim: 3 dim: 227 dim: 227 } }
}

s7,使用caffe2ncnn工具将caffe model转成ncnn model

./caffe2ncnn deploy.prototxt bvlc_alexnet.caffemodel alexnet.param alexnet.bin

在ncnn/build/tools目录下生成param和bin文件。

s8,对模型参数进行加密

./ncnn2mem alexnet.param alexnet.bin alexnet.id.h alexnet.mem.h

在ncnn/build/tools目录下生成.param、.bin和.h文件。

alexnet.param 网络的模型参数

alexnet.bin 网络的权重

alexnet.id.h 在预测图片的时候使用到

s9,开发安卓项目

(1)在Android Studio上创建一个NCNN1,并选择Include C++ support

这里写图片描述

(2)在main目录下创建assets目录,并将alexnet.param、alexnet.bin、label.txt拷贝其中

(3)将include文件夹和 alexnet.id.h拷贝到cpp目录下

(4)在main目录下创建jniLibs/armeabi-v7a/目录,并将alexnet.id.h 拷贝其中

(5)在cpp文件夹下创建C++文件,用于加载模型和预测图片

#include <android/bitmap.h>
#include <android/log.h>
#include <jni.h>
#include <string>
#include <vector>
// ncnn
#include "include/net.h" 
#include "alexnet.id.h" 
#include <sys/time.h> 
#include <unistd.h> 
static ncnn::UnlockedPoolAllocator g_blob_pool_allocator; 
static ncnn::PoolAllocator g_workspace_pool_allocator; 
static ncnn::Mat ncnn_param; 
static ncnn::Mat ncnn_bin; 
static ncnn::Net ncnn_net; 
extern "C" { 
// public native boolean Init(byte[] param, byte[] bin, byte[] words); JNIEXPORT jboolean JNICALL 
Java_com_example_ncnn1_NcnnJni_Init(JNIEnv *env, jobject thiz, jbyteArray param, jbyteArray bin) { 
	// init param 
	{ 
		int len = env->GetArrayLength(param); 
		ncnn_param.create(len, (size_t) 1u); 
		env->GetByteArrayRegion(param, 0, len, (jbyte *) ncnn_param); int ret = ncnn_net.load_param((const unsigned char *) ncnn_param); 
		__android_log_print(ANDROID_LOG_DEBUG, "NcnnJni", "load_param %d %d", ret, len); 
	} 
	
	// init bin 
	{ 
		int len = env->GetArrayLength(bin); 
		ncnn_bin.create(len, (size_t) 1u); 
		env->GetByteArrayRegion(bin, 0, len, (jbyte *) ncnn_bin); 
		int ret = ncnn_net.load_model((const unsigned char *) ncnn_bin); 
		__android_log_print(ANDROID_LOG_DEBUG, "NcnnJni", "load_model %d %d", ret, len); 
	} 

	ncnn::Option opt; 
	opt.lightmode = true; 
	opt.num_threads = 4; 
	opt.blob_allocator = &g_blob_pool_allocator; 
	opt.workspace_allocator = &g_workspace_pool_allocator; 

	ncnn::set_default_option(opt); 

	return JNI_TRUE; 
} 

// public native String Detect(Bitmap bitmap); 
JNIEXPORT jfloatArray JNICALL Java_com_example_ncnn1_NcnnJni_Detect(JNIEnv* env, jobject thiz, jobject bitmap) 
{ 
	// ncnn from bitmap 
	ncnn::Mat in; 
	{ 
		AndroidBitmapInfo info; 
		AndroidBitmap_getInfo(env, bitmap, &info); 
		int width = info.width; int height = info.height; 
		if (info.format != ANDROID_BITMAP_FORMAT_RGBA_8888) 
			return NULL; 

		void* indata; 
		AndroidBitmap_lockPixels(env, bitmap, &indata); 
		// 把像素转换成data,并指定通道顺序 
		in = ncnn::Mat::from_pixels((const unsigned char*)indata, ncnn::Mat::PIXEL_RGBA2BGR, width, height); 
		AndroidBitmap_unlockPixels(env, bitmap); 
	} 

	// ncnn_net 
	std::vector<float> cls_scores; 
	{ 
		// 减去均值和乘上比例 
		const float mean_vals[3] = {103.94f, 116.78f, 123.68f}; 
		const float scale[3] = {0.017f, 0.017f, 0.017f}; 

		in.substract_mean_normalize(mean_vals, scale); 

		ncnn::Extractor ex = ncnn_net.create_extractor(); 
		// 如果时不加密是使用ex.input("data", in); 
		ex.input(mobilenet_v2_param_id::BLOB_data, in); 

		ncnn::Mat out; 
		// 如果时不加密是使用ex.extract("prob", out); 
		ex.extract(mobilenet_v2_param_id::BLOB_prob, out); 

		int output_size = out.w; 
		jfloat *output[output_size]; 
		for (int j = 0; j < out.w; j++) { 
			output[j] = &out[j]; 
		} 

		jfloatArray jOutputData = env->NewFloatArray(output_size); 
		if (jOutputData == nullptr) return nullptr; 

		env->SetFloatArrayRegion(jOutputData, 0, output_size, reinterpret_cast<const jfloat *>(*output)); // copy 
		return jOutputData; 
	} 
} 
}

(6)在项目包com.example.ncnn1下,修改MainActivity.java中的代码

package com.example.ncnn1; 
import android.Manifest; 
import android.app.Activity; 
import android.content.Intent; 
import android.content.pm.PackageManager; 
import android.content.res.AssetManager; 
import android.graphics.Bitmap; 
import android.graphics.BitmapFactory; 
import android.net.Uri; 
import android.os.Bundle; 
import android.support.annotation.NonNull; 
import android.support.annotation.Nullable; 
import android.support.v4.app.ActivityCompat; 
import android.support.v4.content.ContextCompat; 
import android.text.method.ScrollingMovementMethod; 
import android.util.Log; 
import android.view.View; 
import android.widget.Button; 
import android.widget.ImageView; 
import android.widget.TextView; 
import android.widget.Toast; 

import com.bumptech.glide.Glide; 
import com.bumptech.glide.load.engine.DiskCacheStrategy; 
import com.bumptech.glide.request.RequestOptions; 

import java.io.BufferedReader; 
import java.io.FileNotFoundException; 
import java.io.IOException; 
import java.io.InputStream; 
import java.io.InputStreamReader; 
import java.util.ArrayList; 
import java.util.Arrays; 
import java.util.List; 

public class MainActivity extends Activity { 
	private static final String TAG = MainActivity.class.getName(); 
	private static final int USE_PHOTO = 1001; 
	private String camera_image_path; 
	private ImageView show_image; 
	private TextView result_text; 
	private boolean load_result = false; private int[] ddims = {1, 3, 224, 224}; 
	private int model_index = 1; 
	private List<String> resultLabel = new ArrayList<>(); 
	private NcnnJni squeezencnn = new NcnnJni();

	@Override 
	public void onCreate(Bundle savedInstanceState) { 
		super.onCreate(savedInstanceState); 
		setContentView(R.layout.activity_main); 

		try { 
			initSqueezeNcnn(); 
		} catch (IOException e) { 
			Log.e("MainActivity", "initSqueezeNcnn error"); 
		} 

		init_view(); 
		readCacheLabelFromLocalFile(); 
	} 

	private void initSqueezeNcnn() throws IOException { 
		byte[] param = null; 
		byte[] bin = null; 

		{ 
			InputStream assetsInputStream = getAssets().open("mobilenet_v2.param.bin"); 
			int available = assetsInputStream.available(); 
			param = new byte[available]; 
			int byteCode = assetsInputStream.read(param); 
			assetsInputStream.close(); 
		}

		{ 
			InputStream assetsInputStream = getAssets().open("mobilenet_v2.bin"); 
			int available = assetsInputStream.available(); 
			bin = new byte[available]; 
			int byteCode = assetsInputStream.read(bin); 
			assetsInputStream.close(); 
		} 

		load_result = squeezencnn.Init(param, bin); 
		Log.d("load model", "result:" + load_result); 
	} 

	// initialize view 
	private void init_view() { 
		request_permissions(); 
		show_image = (ImageView) findViewById(R.id.show_image); 
		result_text = (TextView) findViewById(R.id.result_text);
		result_text.setMovementMethod(ScrollingMovementMethod.getInstance()); 
		Button use_photo = (Button) findViewById(R.id.use_photo); 

		// use photo click 
		use_photo.setOnClickListener(new View.OnClickListener() { 
			@Override 
			public void onClick(View view) { 
				if (!load_result) { 
					Toast.makeText(MainActivity.this, "never load model", Toast.LENGTH_SHORT).show(); 
					return; 
				} 
				PhotoUtil.use_photo(MainActivity.this, USE_PHOTO); 
			} 
		}); 
	} 

	// load label's name 
	private void readCacheLabelFromLocalFile() { 
		try { 
			AssetManager assetManager = getApplicationContext().getAssets(); 
			BufferedReader reader = new BufferedReader(new InputStreamReader(assetManager.open("synset.txt"))); 
			String readLine = null; 
			while ((readLine = reader.readLine()) != null) { 
				resultLabel.add(readLine); 
			} 
			reader.close(); 
		} catch (Exception e) { 
			Log.e("labelCache", "error " + e); 
		} 
	} 

	@Override 
	protected void onActivityResult(int requestCode, int resultCode, @Nullable Intent data) { 
		String image_path; 
		RequestOptions options = new RequestOptions().skipMemoryCache(true).diskCacheStrategy(DiskCacheStrategy.NONE); 
		if (resultCode == Activity.RESULT_OK) { 
			switch (requestCode) { 
				case USE_PHOTO: 
					if (data == null) { 
						Log.w(TAG, "user photo data is null"); 
						return; 
					} 
					Uri image_uri = data.getData(); 
					Glide.with(MainActivity.this).load(image_uri).apply(options).into(show_image); 
					// get image path from uri 
					image_path = PhotoUtil.get_path_from_URI(MainActivity.this, image_uri); 
					// predict image 
					predict_image(image_path);
					break; 
			} 
		} 
	} 

	//  predict image 
	private void predict_image(String image_path) { 
		// picture to float array 
		Bitmap bmp = PhotoUtil.getScaleBitmap(image_path); 
		Bitmap rgba = bmp.copy(Bitmap.Config.ARGB_8888, true); 

		// resize to 227x227 
		Bitmap input_bmp = Bitmap.createScaledBitmap(rgba, ddims[2], ddims[3], false); 
		try { 
			// Data format conversion takes too long 
			// Log.d("inputData", Arrays.toString(inputData)); 
			long start = System.currentTimeMillis(); 
			// get predict result 
			float[] result = squeezencnn.Detect(input_bmp); 
			long end = System.currentTimeMillis(); 
			Log.d(TAG, "origin predict result:" + Arrays.toString(result)); 
			long time = end - start; Log.d("result length", String.valueOf(result.length)); 
			// show predict result and time 
			int r = get_max_result(result); 
			String show_text = "result:" + r + "\nname:" + resultLabel.get(r) + "\nprobability:" + result[r] + "\ntime:" + time + "ms"; 
			result_text.setText(show_text); 
		} catch (Exception e) { 
			e.printStackTrace(); 
		} 
	} 

	// get max probability label 
	private int get_max_result(float[] result) { 
		float probability = result[0]; 
		int r = 0; 
		for (int i = 0; i < result.length; i++) { 
			if (probability < result[i]) { 
				probability = result[i]; 
				r = i; 
			}
		} 
		return r; 
	} 

	// request permissions 
	private void request_permissions() { 
		List<String> permissionList = new ArrayList<>(); 
		if (ContextCompat.checkSelfPermission(this, Manifest.permission.CAMERA) != PackageManager.PERMISSION_GRANTED) { 
			permissionList.add(Manifest.permission.CAMERA); 
		} 
		
		if (ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_EXTERNAL_STORAGE) != PackageManager.PERMISSION_GRANTED) { 
			permissionList.add(Manifest.permission.WRITE_EXTERNAL_STORAGE); 
		} 

		if (ContextCompat.checkSelfPermission(this, Manifest.permission.READ_EXTERNAL_STORAGE) != PackageManager.PERMISSION_GRANTED) { 
			permissionList.add(Manifest.permission.READ_EXTERNAL_STORAGE); 
		} 

		// if list is not empty will request permissions 
		if (!permissionList.isEmpty()) { 
			ActivityCompat.requestPermissions(this, permissionList.toArray(new String[permissionList.size()]), 1); 
		} 
	} 

	@Override 
	public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) { 
		super.onRequestPermissionsResult(requestCode, permissions, grantResults); 
		switch (requestCode) { 
			case 1: 
				if (grantResults.length > 0) { 
					for (int i = 0; i < grantResults.length; i++) { 
						int grantResult = grantResults[i]; 
						if (grantResult == PackageManager.PERMISSION_DENIED) { 
							String s = permissions[i]; 
							Toast.makeText(this, s + " permission was denied", Toast.LENGTH_SHORT).show(); 
						} 
					} 
				} 
				break; 
		} 
	} 
}

(7)在项目的包com.example.ncnn1下,创建一个NcnnJni.java类,用于提供JNI接口,代码如下:

package com.example.ncnn1; 

import android.graphics.Bitmap; 

public class NcnnJni { 
	public native boolean Init(byte[] param, byte[] bin); 
	public native float[] Detect(Bitmap bitmap); 
	
	static { 
		System.loadLibrary("ncnn_jni"); 
	} 
}

(8)在项目的包com.example.ncnn1下,创建一个PhotoUtil.java类,这个是图片的工具类,代码如下:

package com.example.ncnn1; 

import android.app.Activity; 
import android.content.Context; 
import android.content.Intent; 
import android.database.Cursor; 
import android.graphics.Bitmap; 
import android.graphics.BitmapFactory; 
import android.net.Uri; 
import android.provider.MediaStore; 
import java.nio.FloatBuffer; 

public class PhotoUtil { 
	// get picture in photo 
	public static void use_photo(Activity activity, int requestCode) {
		Intent intent = new Intent(Intent.ACTION_PICK); 
		intent.setType("image/*"); 
		activity.startActivityForResult(intent, requestCode); 
	} 

	// get photo from Uri 
	public static String get_path_from_URI(Context context, Uri uri) { 
		String result; 
		Cursor cursor = context.getContentResolver().query(uri, null, null, null, null); 
		if (cursor == null) { 
			result = uri.getPath(); 
		} else { 
			cursor.moveToFirst(); 
			int idx = cursor.getColumnIndex(MediaStore.Images.ImageColumns.DATA); 
			result = cursor.getString(idx); 
			cursor.close(); 
		} 
		return result; 
	} 

	// compress picture 
	public static Bitmap getScaleBitmap(String filePath) { 
		BitmapFactory.Options opt = new BitmapFactory.Options(); 
		opt.inJustDecodeBounds = true; 
		BitmapFactory.decodeFile(filePath, opt); 

		int bmpWidth = opt.outWidth; 
		int bmpHeight = opt.outHeight; 
		
		int maxSize = 500; 
		
		// compress picture with inSampleSize 
		opt.inSampleSize = 1; 
		while (true) { 
			if (bmpWidth / opt.inSampleSize < maxSize || bmpHeight / opt.inSampleSize < maxSize) { 
				break; 
			} 
			opt.inSampleSize *= 2; 
		} 
		opt.inJustDecodeBounds = false; 
		return BitmapFactory.decodeFile(filePath, opt); 
	} 
}

(9)修改启动页面的布局,修改如下:

<?xml version="1.0" encoding="utf-8"?> 
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:app="http://schemas.android.com/apk/res-auto"
    xmlns:tools="http://schemas.android.com/tools"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    tools:context=".MainActivity"> 

    <LinearLayout
        android:id="@+id/btn_ll"
        android:layout_alignParentBottom="true"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:orientation="horizontal"> 

        <Button
            android:id="@+id/use_photo"
            android:layout_weight="1"
            android:layout_width="0dp"
            android:layout_height="wrap_content"
            android:text="相册" /> 

    </LinearLayout> 

    <TextView
    	android:layout_above="@id/btn_ll"
    	android:id="@+id/result_text"
    	android:textSize="16sp"
    	android:layout_width="match_parent"
    	android:hint="预测结果会在这里显示"
    	android:layout_height="100dp" /> 
    <ImageView
    	android:layout_alignParentTop="true"
    	android:layout_above="@id/result_text"
    	android:id="@+id/show_image"
    	android:layout_width="match_parent"
    	android:layout_height="match_parent" /> 
</RelativeLayout>

(10)修改APP目录下的CMakeLists.txt文件,修改如下:

# For more information about using CMake with Android Studio, read the 
# documentation: https://d.android.com/studio/projects/add-native-code.html 

# Sets the minimum version of CMake required to build the native library. 

cmake_minimum_required(VERSION 3.4.1) 

# Creates and names a library, sets it as either STATIC 
# or SHARED, and provides the relative paths to its source code. 
# You can define multiple libraries, and CMake builds them for you. 
# Gradle automatically packages shared libraries with your APK. 
set(ncnn_lib ${CMAKE_SOURCE_DIR}/src/main/jniLibs/armeabi-v7a/libncnn.a) 
add_library (ncnn_lib STATIC IMPORTED) 
set_target_properties(ncnn_lib PROPERTIES IMPORTED_LOCATION ${ncnn_lib}) 

add_library( # Sets the name of the library. 
			ncnn_jni 
			# Sets the library as a shared library. 
			SHARED 
			
			# Provides a relative path to your source file(s). 
			src/main/cpp/ncnn_jni.cpp ) 

# Searches for a specified prebuilt library and stores the path as a 
# variable. Because CMake includes system libraries in the search path by 
# default, you only need to specify the name of the public NDK library 
# you want to add. CMake verifies that the library exists before 
# completing its build. 

find_library( # Sets the name of the path variable. 
				log-lib 
				
				# Specifies the name of the NDK library that 
				# you want CMake to locate. 
				log ) 

# Specifies libraries CMake should link to your target library. You 
# can link multiple libraries, such as libraries you define in this 
# build script, prebuilt third-party libraries, or system libraries. 

target_link_libraries( # Specifies the target library. 
						ncnn_jni 
						ncnn_lib 
						jnigraphics 

						# Links the target library to the log library 
						# included in the NDK. 
						${log-lib} )

(11)修改APP目录下的build.gradle文件,修改如下:

apply plugin: 'com.android.application' 

android { 
	compileSdkVersion 28 
	defaultConfig { 
		applicationId "com.example.ncnn1" 
		minSdkVersion 21 
		targetSdkVersion 28 
		versionCode 1 
		versionName "1.0" 
		testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner" 
		externalNativeBuild { 
			cmake { 
				cppFlags "-std=c++11 -fopenmp" 
				abiFilters "armeabi-v7a" 
			}
		}
	} 
	buildTypes { 
		release { 
			minifyEnabled false 
			proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro' 
		}
	} 
	externalNativeBuild { 
		cmake { 
			path "CMakeLists.txt" 
		} 
	} 

	sourceSets { 
		main { 
			jniLibs.srcDirs = ["src/main/jniLibs"] 
			jni.srcDirs = ['src/cpp'] 
		}
	} 
} 

dependencies { 
	implementation fileTree(dir: 'libs', include: ['*.jar']) 
	implementation 'com.android.support:appcompat-v7:28.0.0-rc02' 
	implementation 'com.android.support.constraint:constraint-layout:1.1.3' 
	testImplementation 'junit:junit:4.12' 
	implementation 'com.github.bumptech.glide:glide:4.3.1' 
	androidTestImplementation 'com.android.support.test:runner:1.0.2' 
	androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2' 
}

(12)最后在配置文件中添加权限

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/> 
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

(13)编译完成