forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
150 lines (117 loc) ยท 5.33 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import argparse
import os
import random
import time
import numpy as np
import paddle
import paddle.nn.functional as F
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import LinearDecayWithWarmup, AutoModel, AutoTokenizer
from data import create_dataloader, gen_pair
from data import convert_pairwise_example as convert_example
from model import PairwiseMatching
import pandas as pd
from tqdm import tqdm
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--margin", default=0.1, type=float, help="Margin for pos_score and neg_score.")
parser.add_argument("--test_file", type=str, required=True, help="The full path of test file")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument('--model_name_or_path', default="ernie-3.0-medium-zh", help="The pretrained model used for training")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=1000, help="Random seed for initialization.")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
args = parser.parse_args()
# yapf: enable
def set_seed(seed):
"""sets random seed"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
@paddle.no_grad()
def evaluate(model, metric, data_loader, phase="dev"):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
metric(obj:`paddle.metric.Metric`): The evaluation metric.
"""
model.eval()
metric.reset()
for idx, batch in enumerate(data_loader):
input_ids, token_type_ids, labels = batch
pos_probs = model.predict(input_ids=input_ids,
token_type_ids=token_type_ids)
neg_probs = 1.0 - pos_probs
preds = np.concatenate((neg_probs, pos_probs), axis=1)
metric.update(preds=preds, labels=labels)
print("eval_{} auc:{:.3}".format(phase, metric.accumulate()))
metric.reset()
model.train()
# ๆๅปบ่ฏปๅๅฝๆฐ๏ผ่ฏปๅๅๅงๆฐๆฎ
def read(src_path, is_predict=False):
data = pd.read_csv(src_path, sep='\t')
for index, row in tqdm(data.iterrows()):
query = row['query']
title = row['title']
neg_title = row['neg_title']
yield {'query': query, 'title': title, 'neg_title': neg_title}
def read_test(src_path, is_predict=False):
data = pd.read_csv(src_path, sep='\t')
for index, row in tqdm(data.iterrows()):
query = row['query']
title = row['title']
label = row['label']
yield {'query': query, 'title': title, 'label': label}
def main():
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args.seed)
dev_ds = load_dataset(read_test, src_path=args.test_file, lazy=False)
print(dev_ds[0])
pretrained_model = AutoModel.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
trans_func_eval = partial(convert_example,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
phase="eval")
batchify_fn_eval = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"
), # pair_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"
), # pair_segment
Stack(dtype="int64") # label
): [data for data in fn(samples)]
dev_data_loader = create_dataloader(dev_ds,
mode='dev',
batch_size=args.batch_size,
batchify_fn=batchify_fn_eval,
trans_fn=trans_func_eval)
model = PairwiseMatching(pretrained_model, margin=args.margin)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
metric = paddle.metric.Auc()
evaluate(model, metric, dev_data_loader, "dev")
if __name__ == "__main__":
main()